[1]

Mao K, Zhang G. 2021. The role of PARP1 in neurodegenerative diseases and aging. The FEBS JournalIn Press

doi: 10.1111/febs.15716
[2]

Lakey-Beitia J, Berrocal R, Rao KS, Durant AA. 2015. Polyphenols as therapeutic molecules in Alzheimer's Disease through modulating amyloid pathways. Molecular Neurobiology 51:466−79

doi: 10.1007/s12035-014-8722-9
[3]

Sade Yazdi D, Laor Bar-Yosef D, Adsi H, Kreiser T, Sigal S, et al. 2021. Homocysteine fibrillar assemblies display cross-talk with Alzheimer's disease β-amyloid polypeptide. PNAS 118:e2017575118

doi: 10.1073/pnas.2017575118
[4]

Ke P, Zhou R, Serpell LC, Riek R, Knowles TPJ, et al. 2020. Half a century of amyloids: past, present and future. Chemical Society Reviews 49:5473−509

doi: 10.1039/C9CS00199A
[5]

Chiti F, Dobson CM. 2017. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annual Review of Biochemistry 86:27−68

doi: 10.1146/annurev-biochem-061516-045115
[6]

Hu B, Shen Y, Adamcik J, Fischer P, Schneider M, et al. 2018. Polyphenol-binding amyloid fibrils self-assemble into reversible hydrogels with antibacterial activity. ACS Nano 12:3385−96

doi: 10.1021/acsnano.7b08969
[7]

Riek R, Eisenberg DS. 2016. The activities of amyloids from a structural perspective. Nature 539:227−35

doi: 10.1038/nature20416
[8]

Nikbakht Nasrabadi M, Sedaghat Doost A, Mezzenga R. 2021. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids 118:106789

doi: 10.1016/j.foodhyd.2021.106789
[9]

Herrup K. 2015. The case for rejecting the amyloid cascade hypothesis. Nature Neuroscience 18:794−99

doi: 10.1038/nn.4017
[10]

Bieschke J. 2013. Natural compounds may open new routes to treatment of amyloid diseases. Neurotherapeutics 10:429−39

doi: 10.1007/s13311-013-0192-7
[11]

Hardy J, Selkoe, DJ. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297:353−56

doi: 10.1126/science.1072994
[12]

Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, et al. 1992. Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiology of Aging 13:179−89

doi: 10.1016/0197-4580(92)90027-U
[13]

Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. 2021. Role of polyphenols on gut microbiota and the ubiquitin-proteasome system in neurodegenerative diseases. Journal of Agricultural and Food Chemistry 69:6119−44

doi: 10.1021/acs.jafc.1c00923
[14]

Granda H, de Pascual-Teresa S. 2018. Interaction of polyphenols with other food components as a means for their neurological health benefits. Journal of Agricultural and Food Chemistry 66:8224−30

doi: 10.1021/acs.jafc.8b02839
[15]

Szwajgier D, Baranowska-Wojcik E, Borowiec K. 2018. Phenolic acids exert anticholinesterase and cognition-improving effects. Current Alzheimer Research 15:531−43

doi: 10.2174/1567205014666171128102557
[16]

Ngoungoure VLN, Schluesener J, Moundipa PF, Schluesener H. 2015. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Molecular Nutrition & Food Research 59:8−20

doi: 10.1002/mnfr.201400290
[17]

So M, Kimura Y, Yamaguchi K, Sugiki T, Fujiwara T, et al. 2021. Polyphenol-solubility alters amyloid fibril formation of α-synuclein. Protein Science 30:1701−13

doi: 10.1002/pro.4130
[18]

de Araújo FF, de Paulo Farias D, Neri-Numa IA, Pastore GM. 2021. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry 338:127535

doi: 10.1016/j.foodchem.2020.127535
[19]

Lund MN. 2021. Reactions of plant polyphenols in foods: Impact of molecular structure. Trends in Food Science & Technology 112:241−51

doi: 10.1016/j.jpgs.2021.03.056
[20]

de Paulo Farias D, Neri-Numa IA, de Araújo FF, Pastore GM. 2020. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry 306:125630

doi: 10.1016/j.foodchem.2019.125630
[21]

Lourenco Neto M, Agra KL, Suassuna Filho J, Jorge FE. 2018. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 193:249−57

doi: 10.1016/j.saa.2017.12.036
[22]

Vuolo MM, Lima VS, Marostica Junior MR. 2019. Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds: Health Benefits and Potential Applications, ed. Campos MRS. UK: Woodhead Publishing, Elsevier. pp. 33−50 https://doi.org/10.1016/B978-0-12-814774-0.00002-5

[23]

de la Rosa LA, Moreno-Escamilla JO, Rodrigo-García J, Alvarez-Parrilla E. 2019. Phenolic Compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables, ed. Yahia EM. UK: Woodhead Publishing, Elsevier. pp. 253−71 https://doi.org/10.1016/b978-0-12-813278-4.00012-9

[24]

Farrag Y, Ide W, Montero B, Rico M, Rodríguez-Llamazares S, et al. 2018. Starch films loaded with donut-shaped starch-quercetin microparticles: Characterization and release kinetics. International Journal of Biological Macromolecules 118:2201−7

doi: 10.1016/j.ijbiomac.2018.07.087
[25]

Zhang L, Gui S, Wang J, Chen Q, Zeng J, et al. 2020. Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. Journal of Functional Foods 64:103654

doi: 10.1016/j.jff.2019.103654
[26]

Massounga Bora AF, Ma S, Li X, Liu L. 2018. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International 105:241−49

doi: 10.1016/j.foodres.2017.11.047
[27]

Takahashi M, Ozaki M, Miyashita M, Fukazawa M, Nakaoka T, et al. 2019. Effects of timing of acute catechin-rich green tea ingestion on postprandial glucose metabolism in healthy men. The Journal of Nutritional Biochemistry 73:108221

doi: 10.1016/j.jnutbio.2019.108221
[28]

Jilani H, Cilla A, Barberá R, Hamdi M. 2020. Antiproliferative activity of green, black tea and olive leaves polyphenols subjected to biosorption and in vitro gastrointestinal digestion in Caco-2 cells. Food Research International 136:109317

doi: 10.1016/j.foodres.2020.109317
[29]

Lv P, Shi F, Chen X, Xu L, Wang C, et al. 2020. Tea polyphenols inhibit the growth and angiogenesis of breast cancer xenografts in a mouse model. Journal of Traditional Chinese Medical Sciences 7:141−47

doi: 10.1016/j.jtcms.2020.05.001
[30]

Miller PE, Zhao D, Frazier-Wood AC, Michos ED, Averill M, et al. 2017. Associations of coffee, tea, and caffeine intake with coronary artery calcification and cardiovascular events. The American Journal of Medicine 130:188−97.E5

doi: 10.1016/j.amjmed.2016.08.038
[31]

Wang D, Gao Q, Wang T, Kan Z, Li X, et al. 2020. Green tea polyphenols and epigallocatechin-3-gallate protect against perfluorodecanoic acid induced liver damage and inflammation in mice by inhibiting NLRP3 inflammasome activation. Food Research International 127:108628

doi: 10.1016/j.foodres.2019.108628
[32]

Liang J, Yan H, Puligundla P, Gao X, Zhou Y, Wan X. 2017. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids 69:286−92

doi: 10.1016/j.foodhyd.2017.01.041
[33]

Miyamoto T, Zhang X, Ueyama Y, Apisada K, Nakayama M, et al. 2017. Development of novel monoclonal antibodies directed against catechins for investigation of antibacterial mechanism of catechins. Journal of Microbiological Methods 137:6−13

doi: 10.1016/j.mimet.2017.03.014
[34]

Yan Z, Zhong Y, Duan Y, Chen Q, Li F. 2020. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition 6:115−23

doi: 10.1016/j.aninu.2020.01.001
[35]

Lu W, Kelly AL, Miao S. 2016. Emulsion-based encapsulation and delivery systems for polyphenols. Trends in Food Science & Technology 47:1−9

doi: 10.1016/j.jpgs.2015.10.015
[36]

Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, et al. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75:588−602

doi: 10.1111/j.1365-2125.2012.04425.x
[37]

Zhang Y, Lv C, Zhao G. 2021. Ways to enhance the bioavailability of polyphenols in the brain: A journey through the blood-brain barrier. Food Reviews International

doi: 10.1080/87559129.2021.1888973
[38]

Tsai TH. 2002. Determination of naringin in rat blood, brain, liver, and bile using microdialysis and its interaction with cyclosporin A, a P-glycoprotein modulator. Journal of Agricultural and Food Chemistry 50:6669−74

doi: 10.1021/jf020603p
[39]

Faria A, Pestana D, Teixeira D, Azevedo J, Freitas V, et al. 2010. Flavonoid transport across RBE4 cells: A blood-brain barrier model. Cellular and Molecular Biology Letters 15:234−41

doi: 10.2478/s11658-010-0006-4
[40]

Chen TY, Kritchevsky J, Hargett K, Feller K, Klobusnik R, et al. 2015. Plasma bioavailability and regional brain distribution of polyphenols from apple/grape seed and bilberry extracts in a young swine model. Molecular Nutrition & Food Research 59:2432−47

doi: 10.1002/mnfr.201500224
[41]

Milbury PE, Kalt W. 2010. Xenobiotic metabolism and berry flavonoid transport across the blood−brain barrier. Journal of Agricultural and Food Chemistry 58:3950−56

doi: 10.1021/jf903529m
[42]

Lu J, Wu D, Zheng Y, Hu B, Zhang Z. 2010. Purple sweet potato color alleviates D-galactose-induced brain aging in old mice by promoting survival of neurons via PI3K pathway and inhibiting cytochrome C-mediated apoptosis. Brain Pathology 20:598−612

doi: 10.1111/j.1750-3639.2009.00339.x
[43]

Fornasaro S, Ziberna L, Gasperotti M, Tramer F, Vrhovšek U, et al. 2016. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Scientific Reports 6:22815

doi: 10.1038/srep22815
[44]

Rehman SU, Shah SA, Ali T, Chung JI, Kim MO. 2017. Anthocyanins reversed D-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Molecular Neurobiology 54:255−71

doi: 10.1007/s12035-015-9604-5
[45]

Talavéra S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, et al. 2005. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. Journal of Agricultural and Food Chemistry 53:3902−8

doi: 10.1021/jf050145v
[46]

Memariani Z, Abbas SQ, ul Hassan SS, Ahmadi A, Chabra A. 2021. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review. Pharmacological Research 171:105264

doi: 10.1016/j.phrs.2020.105264
[47]

Zhang Z, Zhang X, Bi K, He Y, Yan W, et al. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11−24

doi: 10.1016/j.jpgs.2021.05.023
[48]

Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T, Combrzyński M, Nowakowska D, Matwijczuk A. 2020. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols: A non-systematic review. Nutrients 12:1401

doi: 10.3390/nu12051401
[49]

Li Y, He D, Li B, Lund MN, Xing Y, et al. 2021. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends in Food Science & Technology 110:470−82

doi: 10.1016/j.jpgs.2021.02.009
[50]

Németh K, Plumb GW, Berrin JG, Juge N, Jacob R, et al. 2003. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. European Journal of Nutrition 42:29−42

doi: 10.1007/s00394-003-0397-3
[51]

Konishi Y, Zhao Z, Shimizu M. 2006. Phenolic acids are absorbed from the rat stomach with different absorption rates. Journal of Agricultural and Food Chemistry 54:7539−43

doi: 10.1021/jf061554+
[52]

Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, et al. 2021. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Critical Reviews in Food Science and Nutrition

doi: 10.1080/10408398.2021.1946006
[53]

Chen L, Cao H, Huang Q, Xiao JB, Teng H. 2021. Absorption, metabolism and bioavailability of flavonoids: A review. Critical Reviews in Food Science and Nutrition

doi: 10.1080/10408398.2021.1917508
[54]

Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. 2019. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. International Journal of Molecular Sciences 20:3630

doi: 10.3390/ijms20153630
[55]

Rigacci S, Guidotti V, Bucciantini M, Nichino D, Relini A, et al. 2011. Aβ1-42 aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Current Alzheimer Research 8:841−52

doi: 10.2174/156720511798192682
[56]

Ferreira N, Saraiva MJ, Almeida MR. 2011. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Letters 585:2424−30

doi: 10.1016/j.febslet.2011.06.030
[57]

He J, Xing Y, Huang B, Zhang Y, Zeng C. 2009. Tea catechins induce the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates. Journal of Agricultural and Food Chemistry 57:11391−96

doi: 10.1021/jf902664f
[58]

Thapa A, Woo ER, Chi EY, Sharoar MG, Jin H, et al. 2011. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry 50:2445−55

doi: 10.1021/bi101731d
[59]

Baba WN, McClements DJ, Maqsood S. 2021. Whey protein-polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry 365:130455

doi: 10.1016/j.foodchem.2021.130455
[60]

Huang A, McClements DJ, Luo S, Chen T, Ye J, et al. 2022. Fabrication of rutin-protein complexes to form and stabilize bilayer emulsions: Impact of concentration and pretreatment. Food Hydrocolloids 122:107056

doi: 10.1016/j.foodhyd.2021.107056
[61]

Qie X, Chen W, Zeng M, Wang Z, Chen J, et al. 2021. Interaction between β-lactoglobulin and chlorogenic acid and its effect on antioxidant activity and thermal stability. Food Hydrocolloids 121:107059

doi: 10.1016/j.foodhyd.2021.107059
[62]

Li C, Dai T, Chen J, Li X, Li T, et al. 2021. Protein-polyphenol functional ingredients: The foaming properties of lactoferrin are enhanced by forming complexes with procyanidin. Food Chemistry 339:128145

doi: 10.1016/j.foodchem.2020.128145
[63]

Lv Y, Liang Q, Li Y, Liu X, Zhang D, et al. 2022. Study of the binding mechanism between hydroxytyrosol and bovine serum albumin using multispectral and molecular docking. Food Hydrocolloids 122:107072

doi: 10.1016/j.foodhyd.2021.107072
[64]

Yan X, Gao Y, Liu S, Zhang G, Zhao J, et al. 2021. Covalent modification by phenolic extract improves the structural properties and antioxidant activities of the protein isolate from Cinnamomum camphora seed kernel. Food Chemistry 352:129377

doi: 10.1016/j.foodchem.2021.129377
[65]

Yildirim-Elikoglu S, Erdem YK. 2018. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International 34:665−97

doi: 10.1080/87559129.2017.1377225
[66]

Li T, Li X, Dai T, Hu P, Niu X, et al. 2020. Binding mechanism and antioxidant capacity of selected phenolic acid - β-casein complexes. Food Research International 129:108802

doi: 10.1016/j.foodres.2019.108802
[67]

Wang Q, Tang Y, Yang Y, Zhao J, Zhang Y, et al. 2020. Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 229:117937

doi: 10.1016/j.saa.2019.117937
[68]

Yang R, Tian J, Liu Y, Zhu L, Sun J, et al. 2021. Interaction mechanism of ferritin protein with chlorogenic acid and iron ion: The structure, iron redox, and polymerization evaluation. Food Chemistry 349:129144

doi: 10.1016/j.foodchem.2021.129144
[69]

Wang S, Li X, Zhu J, Liu H, Liu T, et al. 2021. Covalent interaction between high hydrostatic pressure-pretreated rice bran protein hydrolysates and ferulic acid: Focus on antioxidant activities and emulsifying properties. Journal of Agricultural and Food Chemistry 69:7777−85

doi: 10.1021/acs.jafc.1c01949
[70]

Li X, Li M, Zhang T, McClements DJ, Liu X, et al. 2021. Enzymatic and nonenzymatic conjugates of lactoferrin and (−)-epigallocatechin gallate: Formation, structure, functionality, and allergenicity. Journal of Agricultural and Food Chemistry 69:6291−302

doi: 10.1021/acs.jafc.1c01167
[71]

Xu Y, Han M, Huang M, Xu X. 2021. Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chemistry 352:129376

doi: 10.1016/j.foodchem.2021.129376
[72]

Liu X, Song Q, Li X, Chen Y, Liu C, et al. 2021. Effects of different dietary polyphenols on conformational changes and functional properties of protein-polyphenol covalent complexes. Food Chemistry 361:130071

doi: 10.1016/j.foodchem.2021.130071
[73]

Wu G, Hui X, Gong X, Tran KN, Stipkovits L, et al. 2021. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends in Food Science & Technology 110:107−19

doi: 10.1016/j.jpgs.2021.01.072
[74]

Xu H, Lu Y, Zhang T, Liu K, Liu L, et al. 2019. Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food Chemistry 281:28−35

doi: 10.1016/j.foodchem.2018.12.077
[75]

Jing H, Huang X, Jiang C, Wang L, Du X, et al. 2021. Effects of tannic acid on the structure and proteolytic digestion of bovine lactoferrin. Food Hydrocolloids 117:106666

doi: 10.1016/j.foodhyd.2021.106666
[76]

Quan TH, Benjakul S, Sae-leaw T, Balange AK, Maqsood S. 2019. Protein-polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91:507−17

doi: 10.1016/j.jpgs.2019.07.049
[77]

Soares S, Brandão E, García-Estevez I, Fonseca F, Guerreiro C, et al. 2019. Interaction between ellagitannins and salivary proline-rich proteins. Journal of Agricultural and Food Chemistry 67:9579−90

doi: 10.1021/acs.jafc.9b02574
[78]

Zhang Q, Cheng Z, Chen R, Wang Y, Miao S, et al. 2021. Covalent and non-covalent interactions of cyanidin-3-O-glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food & Function 12:10107−20

doi: 10.1039/d1fo01946e
[79]

Cong J, Cui J, Zhang H, Dzah CS, He Y, et al. 2020. Binding affinity, antioxidative capacity and in vitro digestion of complexes of grape seed procyanidins and pork, chicken and fish protein. Food Research International 136:109530

doi: 10.1016/j.foodres.2020.109530
[80]

Ma G, Tang C, Sun X, Zhang J. 2021. The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility. Food Hydrocolloids 113:106485

doi: 10.1016/j.foodhyd.2020.106485
[81]

Griffith JS. 1967. Nature of the Scrapie Agent: Self-replication and scrapie. Nature 215:1043−44

doi: 10.1038/2151043a0
[82]

Jarrett JT, Lansbury PT. 1993. Seeding "one-dimensional crystallization" of amyloid: A Pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73:1055−58

doi: 10.1016/0092-8674(93)90635-4
[83]

Sequeira IR, Poppitt SD. 2017. Unfolding novel mechanisms of polyphenol flavonoids for better glycaemic control: Targeting pancreatic islet amyloid polypeptide (IAPP). Nutrients 9:788

doi: 10.3390/nu9070788
[84]

Moreno-Gonzalez I, Edwards Iii G, Salvadores N, Shahnawaz M, Diaz-Espinoza R, et al. 2017. Molecular interaction between type 2 diabetes and Alzheimer's disease through cross-seeding of protein misfolding. Molecular Psychiatry 22:1327−34

doi: 10.1038/mp.2016.230
[85]

Akbari A, Bamdad F, Wu J. 2018. Chaperone-like food components: from basic concepts to food applications. Food & Function 9:3597−609

doi: 10.1039/c7fo01902e
[86]

Adamcik J, Mezzenga R. 2018. Amyloid polymorphism in the protein folding and aggregation energy landscape. Angewandte Chemie - International Edition 57:8370−82

doi: 10.1002/anie.201713416
[87]

Knowles TPJ, Vendruscolo M, Dobson CM. 2014. The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology 15:384−96

doi: 10.1038/nrm3810
[88]

Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. 2013. Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry 82:323−55

doi: 10.1146/annurev-biochem-060208-092442
[89]

Doyle SM, Genest O, Wickner S. 2013. Protein rescue from aggregates by powerful molecular chaperone machines. Nature Reviews Molecular Cell Biology 14:617−29

doi: 10.1038/nrm3660
[90]

Soto C. 2003. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience 4:49−60

doi: 10.1038/nrn1007
[91]

Duyckaerts C, Delatour B, Potier MC. 2009. Classification and basic pathology of Alzheimer disease. Acta Neuropathologica 118:5−36

doi: 10.1007/s00401-009-0532-1
[92]

Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, et al. 2018. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences 75:3521−38

doi: 10.1007/s00018-018-2872-2
[93]

Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, et al. 2020. Cerebral amyloid angiopathy and Alzheimer disease-one peptide, two pathways. Nature Reviews Neurology 16:30−42

doi: 10.1038/s41582-019-0281-2
[94]

Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. 2014. Tau protein modifications and interactions: Their role in function and dysfunction. International Journal of Molecular Sciences 15:4671−713

doi: 10.3390/ijms15034671
[95]

Dolan PJ, Johnson GVW. 2010. The role of tau kinases in Alzheimer's disease. Current Opinion in Drug Discovery & Development 13:595−603

[96]

Bocci T, Prenassi M, Arlotti M, Cogiamanian FM, Borrellini L, et al. 2021. Eight-hours conventional versus adaptive deep brain stimulation of the subthalamic nucleus in Parkinson's disease. NPJ Parkinson's Disease 7:88

doi: 10.1038/s41531-021-00229-z
[97]

Freyssin A, Page G, Fauconneau B, Rioux Bilan A. 2018. Natural polyphenols effects on protein aggregates in Alzheimer's and Parkinson's prion-like diseases. Neural Regeneration Research 13:955−61

doi: 10.4103/1673-5374.233432
[98]

Jellinger KA. 2021. Morphological differences between dementia with Lewy bodies and Parkinson's disease-dementia. Neuropathology and Applied Neurobiology In Press

doi: 10.1111/nan.12708
[99]

Tanudjojo B, Shaikh SS, Fenyi A, Bousset L, Agarwal D, et al. 2021. Phenotypic manifestation of α-synuclein strains derived from Parkinson's disease and multiple system atrophy in human dopaminergic neurons. Nature Communications 12:3817

doi: 10.1038/s41467-021-23682-z
[100]

Xie Y, Zhou C, Zhou Z, Hong J, Che M, et al. 2010. Interaction with synphilin-1 promotes inclusion formation of α-synuclein: mechanistic insights and pathological implication. FASEB Journal 24:196−205

doi: 10.1096/fj.09-133082
[101]

Perreault L, Skyler JS, Rosenstock J. 2021. Novel therapies with precision mechanisms for type 2 diabetes mellitus. Nature Reviews Endocrinology 17:364−77

doi: 10.1038/s41574-021-00489-y
[102]

Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, et al. 2019. Plant extracts and phytochemicals targeting α-synuclein aggregation in Parkinson's disease models. Frontiers in Pharmacology 9:1555

doi: 10.3389/fphar.2018.01555
[103]

Shimazu R, Anada M, Miyaguchi A, Nomi Y, Matsumoto H. 2021. Evaluation of blood-brain barrier permeability of polyphenols, anthocyanins, and their metabolites. Journal of Agricultural and Food Chemistry 69:11676−86

doi: 10.1021/acs.jafc.1c02898
[104]

Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. 2021. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Frontiers in Neuroscience 15:718188

doi: 10.3389/fnins.2021.718188
[105]

Kim E, Hwang K, Lee J, Han S, Kim EM, et al. 2018. Skin protective effect of epigallocatechin gallate. International Journal of Molecular Sciences 19:173

doi: 10.3390/ijms19010173
[106]

Yang Y, Zhang T. 2019. Antimicrobial activities of tea polyphenol on phytopathogens: A review. Molecules 24:816

doi: 10.3390/molecules24040816
[107]

Dai W, Ruan C, Zhang Y, Wang J, Han J, et al. 2020. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. Journal of Functional Foods 65:103732

doi: 10.1016/j.jff.2019.103732
[108]

Palhano FL, Lee J, Grimster NP, Kelly JW. 2013. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. Journal of the American Chemical Society 135:7503−10

doi: 10.1021/ja3115696
[109]

Cai Z, Li X, Liang J, Xiang L, Wang K, et al. 2018. Bioavailability of tea catechins and its improvement. Molecules 23:2346

doi: 10.3390/molecules23092346
[110]

Prasanna G, Jing P. 2021. Polyphenol binding disassembles glycation-modified bovine serum albumin amyloid fibrils. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 246:119001

doi: 10.1016/j.saa.2020.119001
[111]

Gancar M, Kurin E, Bednarikova Z, Marek J, Mucaji P, et al. 2020. Amyloid aggregation of insulin: An interaction study of green tea constituents. Scientific Reports 10:9115

doi: 10.1038/s41598-020-66033-6
[112]

An T, Feng S, Zeng C. 2017. Oxidized epigallocatechin gallate inhibited lysozyme fibrillation more strongly than the native form. Redox Biology 11:315−21

doi: 10.1016/j.redox.2016.12.016
[113]

Wobst HJ, Sharma A, Diamond MI, Wanker EE, Bieschke J. 2015. The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Letters 589:77−83

doi: 10.1016/j.febslet.2014.11.026
[114]

Kan Z, Wang Y, Chen Q, Tang X, Thompson HJ, et al. 2021. Front Cover: Green tea suppresses amyloid β levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD mice. Molecular Nutrition & Food Research 65:2100626

doi: 10.1002/mnfr.202170051
[115]

Stefani M, Rigacci S. 2013. Protein folding and aggregation into amyloid: The interference by natural phenolic compounds. International Journal of Molecular Sciences 14:12411−57

doi: 10.3390/ijms140612411
[116]

Doytchinova I, Atanasova M, Salamanova E, Ivanov S, Dimitrov I. 2020. Curcumin inhibits the primary nucleation of amyloid-beta peptide: A molecular dynamics study. Biomolecules 10:1323

doi: 10.3390/biom10091323
[117]

Tavanti F, Pedone A, Menziani MC. 2020. Insights into the effect of curcumin and (–)-epigallocatechin-3-gallate on the aggregation of Aβ1-40 monomers by means of molecular dynamics. International Journal of Molecular Sciences 21:5462

doi: 10.3390/ijms21155462
[118]

Radbakhsh S, Barreto GE, Bland AR, Sahebkar A. 2021. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 47:570−86

doi: 10.1002/biof.1735
[119]

Zaidi FK, Bhat R. 2020. Two polyphenols with diverse mechanisms towards amyloidosis: differential modulation of the fibrillation pathway of human lysozyme by curcumin and EGCG. Journal of Biomolecular Structure and Dynamics

doi: 10.1080/07391102.2020.1860824
[120]

Cui L, Wang S, Zhang J, Wang M, Gao Y, et al. 2019. Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 223:117365

doi: 10.1016/j.saa.2019.117365
[121]

Daval M, Bedrood S, Gurlo T, Huang CJ, Costes S, et al. 2010. The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid-Journal of Protein Folding Disorders 17:118−28

doi: 10.3109/13506129.2010.530008