[1] |
Byrne DH, Raseira MB, Bassi D, Piagnani MC, Gasic K, et al. 2012. Peach. eds. Badenes ML, Byrne DH. Boston, MA: Springer US. pp. 505−69
|
[2] |
FAOSTAT. 2019. http://www.fao.org/faostat/en/#data/QC Last Accessed: April 21, 2021
|
[3] |
Byrne D. 2002. Peach breeding trends: A world wide perspective. In V International Peach Symposium, eds. Scott Johnson R, Chrisosto CH. ISHS Acta Horticulturae 592, pp. 49−59 http://dx.doi.org/10.17660/ActaHortic.2002.592.5
|
[4] |
Sansavini S, Gamberini A, Bassi D. 2006. Peach breeding, genetics and new cultivar trends. In ISHS Acta Horticulturae 713: VI International Peach Symposium, ed. Infante R. ISHS Acta Horticulturae 713, pp. 23−48 https://doi.org/10.17660/actahortic.2006.713.1
|
[5] |
van Nocker S, Gardiner SE. 2014. Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research 1:14022 doi: 10.1038/hortres.2014.22
|
[6] |
Fu W, da Silva Linge C, Gasic K. 2021. Genome-wide association study of brown rot (Monilinia spp.) tolerance in peach. Frontiers in Plant Science 12:635914 doi: 10.3389/fpls.2021.635914
|
[7] |
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, et al. 2020. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. Horticulture Research 7:177 doi: 10.1038/s41438-020-00398-7
|
[8] |
Cirilli M, Rossini L, Geuna F, Palmisano F, Minafra A, et al. 2017. Genetic dissection of Sharka disease tolerance in peach (P. persica L. Batsch). BMC Plant Biology 17:192 doi: 10.1186/s12870-017-1117-0
|
[9] |
Peace CP. 2017. DNA-informed breeding of rosaceous crops: promises, progress and prospects. Horticulture Research 4:17006 doi: 10.1038/hortres.2017.6
|
[10] |
Ribaut J, Hoisington D. 1998. Marker-assisted selection: new tools and strategies. Trends in Plant Science 3:236−39 doi: 10.1016/S1360-1385(98)01240-0
|
[11] |
Collard BCY, Mackill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 363:557−72 doi: 10.1098/rstb.2007.2170
|
[12] |
Vendramin E, Pea G, Dondini L, Pacheco I, Dettori MT, et al. 2014. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS One 9:e90574 doi: 10.1371/journal.pone.0090574
|
[13] |
Fleming MB, Miller T, Fu W, Li Z, Gasic K, et al. 2021. Ppe. XapF: High throughput KASP assays to identify fruit response to Xanthomonas Arboricola pv. pruni (Xap) in peach. Preprint doi: 10.21203/rs.3.rs-452756/v1
|
[14] |
Xu Y, Liu X, Fu J, Wang H, Wang J, et al. 2020. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Communications 1:100005 doi: 10.1016/j.xplc.2019.100005
|
[15] |
Roth M, Muranty H, Di Guardo M, Guerra W, Patocchi A, et al. 2020. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. Horticulture Research 7:148 doi: 10.1038/s41438-020-00370-5
|
[16] |
Kumar S, Chagné D, Bink MC, Volz RK, Whitworth C, et al. 2012. Genomic selection for fruit quality traits in apple (Malus ×domestica Borkh.). PLoS One 7:e36674 doi: 10.1371/journal.pone.0036674
|
[17] |
Minamikawa MF, Takada N, Terakami S, Saito T, Onogi A, et al. 2018. Genome-wide association study and genomic prediction using parental and breeding populations of Japanese pear (Pyrus pyrifolia Nakai). Scientific Reports 8:11994 doi: 10.1038/s41598-018-30154-w
|
[18] |
Gezan SA, Osorio LF, Verma S, Whitaker VM. 2017. An experimental validation of genomic selection in octoploid strawberry. Horticulture Research 4:16070 doi: 10.1038/hortres.2016.70
|
[19] |
Biscarini F, Nazzicari N, Bink M, Arús P, Aranzana MJ, et al. 2017. Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies. BMC Genomics 18:432 doi: 10.1186/s12864-017-3781-8
|
[20] |
Desta ZA, Ortiz R. 2014. Genomic selection: genome-wide prediction in plant improvement. Trends in Plant Science 19:592−601 doi: 10.1016/j.tplants.2014.05.006
|
[21] |
VanRaden PM. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science 91:4414−23 doi: 10.3168/jds.2007-0980
|
[22] |
Habier D, Fernando RL, Dekkers JCM. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389−97 doi: 10.1534/genetics.107.081190
|
[23] |
Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 157:1819−29 doi: 10.1093/genetics/157.4.1819
|
[24] |
Habier D, Fernando RL, Kizilkaya K, Garrick DJ. 2011. Extension of the Bayesian alphabet for genomic selection. BMC Bioinformatics 12:186 doi: 10.1186/1471-2105-12-186
|
[25] |
de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, et al. 2009. Predicting quantitative traits with regression models for dense molecular markers and pedigree. Phytopathology 182:375−85 doi: 10.1534/genetics.109.101501
|
[26] |
Pérez P, de los Campos G. 2014. Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483−495 doi: 10.1534/genetics.114.164442
|
[27] |
Sverrisdóttir E, Byrne S, Sundmark EHR, Johnsen HØ, Kirk HG, et al. 2017. Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theoretical and Applied Genetics 130:2091−108 doi: 10.1007/s00122-017-2944-y
|
[28] |
Scorza R, Mehlenbacher SA, Lightner GW. 1985. Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. Journal of American Society for Horticultural Sciences 4:547−52
|
[29] |
Aranzana MJ, Abbassi EK, Howad W, Arús P. 2010. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genetics 11:1−11 doi: 10.1186/1471-2156-11-69
|
[30] |
Pacheco I, Bassi D, Eduardo I, Ciacciulli A, Pirona R, et al. 2014. QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genetics & Genomes 10:1223−42 doi: 10.1007/s11295-014-0756-7
|
[31] |
Feliciano A, Feliciano AJ, Ogawa JM. 1987. Monilinia fructicola resistance in the peach cultivar Bolinha. Phytopathology 77:776−80 doi: 10.1094/Phyto-77-776
|
[32] |
Gradziel TM. 2002. Almond species as sources of new genes for peach improvement. In ISHS Acta Horticulturae 592: V International Peach Symposium, eds. Johnson RS, Chrisosto CH. pp. 81−88 http://doi.org/10.17660/ActaHortic.2002.592.9
|
[33] |
Martínez-García PJ, Parfitt DE, Bostock RM, Fresnedo-Ramírez J, Vazquez-Lobo A, et al. 2013. Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PloS One 8:e78634 doi: 10.1371/journal.pone.0078634
|
[34] |
Baró-Montel N, Eduardo I, Usall J, Casals C, Arús P, et al. 2019. Exploring sources of resistance to brown rot in an interspecific almond × peach population. Journal of the Science of Food and Agriculture 99:4105−13 doi: 10.1002/jsfa.9640
|
[35] |
Mustafa MH, Bassi D, Corre MN, Lino LO, Signoret V, et al. 2021. Phenotyping brown rot susceptibility in stone fruit: A literature review with emphasis on peach. Horticulturae 7:115 doi: 10.3390/horticulturae7050115
|
[36] |
Dini M, Scariotto S, Raseira MCB and Ueno B. 2021. Heritability and segregation of resistance to brown rot in peach fruits. In ISHS Acta Horticulturae 1304: IX International Peach Symposium, eds. Stănică F, DeJong T. pp. 339−46 https://doi.org/10.17660/ActaHortic.2021.1304.47
|
[37] |
Zhang H, Yin L, Wang M, Yuan X, Liu X. 2019. Factors affecting the accuracy of genomic selection for agricultural economic traits in maize, cattle, and pig populations. Frontiers in Genetics 10:189 doi: 10.3389/fgene.2019.00189
|
[38] |
Zhang A, Wang H, Beyene Y, Semagn K, Liu Y, et al. 2017. Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Frontiers in Plant Science 8:1916 doi: 10.3389/fpls.2017.01916
|
[39] |
Gaikpa DS, Koch S, Fromme FJ, Siekmann D, Würschum T, et al. 2020. Genome-wide association mapping and genomic prediction of Fusarium head blight resistance, heading stage and plant height in winter rye (Secale cereale). Plant Breeding 139:508−20 doi: 10.1111/pbr.12810
|
[40] |
Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, et al. 2017. Genome-wide association study and genomic prediction in citrus: Potential of genomics-assisted breeding for fruit quality traits. Scientific Reports 7:4721 doi: 10.1038/s41598-017-05100-x
|
[41] |
Zhou Y, Vales MI, Wang A, Zhang Z. 2017. Systematic bias of correlation coefficient may explain negative accuracy of genomic prediction. Briefings in Bioinformatics 18:1093 doi: 10.1093/bib/bbx133
|
[42] |
Gianola D, van Kaam JBCHM. 2008. Reproducing kernel hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289−303 doi: 10.1534/genetics.107.084285
|
[43] |
Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, et al. 2013. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 Genes|Genomes|Genetics 3:1903−26 doi: 10.1534/g3.113.008227
|
[44] |
Heslot N, Yang HP, Sorrells ME, Jannink JL. 2012. Genomic selection in plant breeding: A comparison of models. Crop Science 52:146−60 doi: 10.2135/cropsci2011.06.0297
|
[45] |
Pérez-Rodríguez P, Gianola D, González-Camacho JM, Crossa J, Manès Y, et al. 2012. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat. G3 Genes|Genomes|Genetics 2:1595−605 doi: 10.1534/g3.112.003665
|
[46] |
Kristensen PS, Jahoor A, Andersen JR, Cericola F, Orabi J, et al. 2018. Genome-wide association studies and comparison of models and cross-validation strategies for genomic prediction of quality traits in advanced winter wheat breeding lines. Frontiers in Plant Science 9:69 doi: 10.3389/fpls.2018.00069
|
[47] |
Haile TA, Walkowiak S, N'Diaye A, Clarke JM, Hucl PJ, et al. 2021. Genomic prediction of agronomic traits in wheat using different models and cross-validation designs. Theoretical and Applied Genetics 134:381−398 doi: 10.1007/s00122-020-03703-z
|
[48] |
de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MPL. 2013. Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics 193:327−345 doi: 10.1534/genetics.112.143313
|
[49] |
Fu W, Burrell R, da Silva Linge C, Schnabel G, Gasic K. 2018. Breeding for brown rot (Monilinia spp.) tolerance in Clemson University peach breeding program. Journal of American Pomological Society 72:94−100
|
[50] |
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1−48 doi: 10.18637/jss.v067.i01
|
[51] |
Holland JB, Nyquist WE, and Cervantes-Martínez CT. 2002. Estimating and Interpreting Heritability for Plant Breeding: An Update. In Plant Breeding Reviews, ed. Janick J. Oxford, UK: John Wiley & Sons. pp. 9−112 https://doi.org/10.1002/9780470650202.ch2
|
[52] |
Gasic K, Da Silva Linge C, Bianco L, Troggio M, Rossini L, et al. Development and evaluation of a 9K SNP addition to the peach IPSC 9K SNP array v1. HortScience 54: S188 https://doi.org/10.21273/HORTSCI.54.9S.S1
|
[53] |
Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197:573−89 doi: 10.1534/genetics.114.164350
|
[54] |
Li Y, Liu J. 2018. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18:176−77 doi: 10.1111/1755-0998.12719
|
[55] |
Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801−6 doi: 10.1093/bioinformatics/btm233
|
[56] |
Rosenberg NA. 2004. DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4:137−38 doi: 10.1046/j.1471-8286.2003.00566.x
|
[57] |
Wang J, Zhang Z. 2021. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genomics, Proteomics & Bioinformatics In Press doi: 10.1016/j.gpb.2021.08.005
|
[58] |
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633−2635 doi: 10.1093/bioinformatics/btm308
|
[59] |
Ligges U, Maechler M. 2003. scatterplot3d - An R Package for Visualizing Multivariate Data. Journal of Statistical Software 8:1−20 doi: 10.18637/jss.v008.i11
|
[60] |
Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, et al. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications 2:467 doi: 10.1038/ncomms1467
|
[61] |
Endelman JB. 2011. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250−55 doi: 10.3835/plantgenome2011.08.0024
|
[62] |
Bates D, Maechler M. 2021. Matrix: sparse and dense matrix classes and methods. R package version 1.3-4. https://CRAN.R-project.org/package=Matrix
|
[63] |
Butler DG, Cullis BR, Gilmour AR, Gogel BG, Thompson R. 2017. ASReml-R Reference Manual Version 4. VSN International Ltd, Hemel Hempstead, HP1 1ES, UK
|
[64] |
Gianola D. 2013. Priors in whole-genome regression: the Bayesian alphabet returns. Genetics 194:573−96 doi: 10.1534/genetics.113.151753
|