[1]

Li H, Yi T, Gao L, Ma P, Zhang T, et al. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5:461−70

doi: 10.1038/s41477-019-0421-0
[2]

Li Y, Svetlana P, Yao J, Li C. 2014. A review on the taxonomic, evolutionary and phytogeographic studies of the lotus plant (Nelumbonaceae: Nelumbo). Acta Geologica Sinica 88:1252−61

doi: 10.1111/1755-6724.12287
[3]

Zhang Y, Lu X, Zeng S, Huang X, Guo Z, et al. 2015. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review. Phytochemistry Reviews 14:321−34

doi: 10.1007/s11101-015-9401-9
[4]

Zheng T, Li P, Li L, Zhang Q. 2021. Research advances in and prospects of ornamental plant genomics. Horticulture Research 8:65

doi: 10.1038/s41438-021-00499-x
[5]

Xue J, Dong W, Cheng T, Zhou S. 2012. Nelumbonaceae: Systematic position and species diversification revealed by the complete chloroplast genome. Journal of Systematics and Evolution 50:477−87

doi: 10.1111/j.1759-6831.2012.00224.x
[6]

Wu Z, Gui S, Quan Z, Pan L, Wang S, et al. 2014. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: Insight into the plastid evolution of basal eudicots. BMC Plant Biology 14:289

doi: 10.1186/s12870-014-0289-0
[7]

Shi T, Rahmani RS, Gugger PF, Wang M, Li H, et al. 2020. Distinct expression and methylation patterns for genes with different fates following a single whole-genome duplication in flowering plants. Molecular Biology and Evolution 37:2394−413

doi: 10.1093/molbev/msaa105
[8]

Guo HB, Li SM, Peng J, Ke WD. 2007. Genetic diversity of Nelumbo accessions revealed by RAPD. Genetic Resources and Crop Evolution 54:741−48

doi: 10.1007/s10722-006-0025-1
[9]

Chen Y, Zhou R, Lin X, Wu K, Qian X, et al. 2008. ISSR analysis of genetic diversity in sacred lotus cultivars. Aquatic Botany 89:311−16

doi: 10.1016/j.aquabot.2008.03.006
[10]

Hu J, Pan L, Liu H, Wang S, Wu Z, et al. 2012. Comparative analysis of genetic diversity in sacred lotus (Nelumbo nucifera Gaertn.) using AFLP and SSR markers. Molecular Biology Reports 39:3637−47

doi: 10.1007/s11033-011-1138-y
[11]

Yang M, Xu L, Liu Y, Yang P. 2015. RNA-seq uncovers SNPs and alternative splicing events in Asian lotus (Nelumbo nucifera). PLoS One 10:e0125702

doi: 10.1371/journal.pone.0125702
[12]

Huang L, Yang M, Li L, Li H, Yang D, et al. 2018. Whole genome re-sequencing reveals evolutionary patterns of sacred lotus (Nelumbo nucifera). Journal of Integrative Plant Biology 60:2−15

doi: 10.1111/jipb.12606
[13]

Li Y, Zhu F, Zheng X, Hu M, Dong C, et al. 2020. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. BMC Genomics 21:146

doi: 10.1186/s12864-019-6376-8
[14]

Liu Z, Zhu H, Zhou J, Jiang S, Wang Y, et al. 2020. Resequencing of 296 cultivated and wild lotus accessions unravels its evolution and breeding history. The Plant Journal 104:1673−84

doi: 10.1111/tpj.15029
[15]

Fang K, Xia Z, Li H, Jiang X, Qin D, et al. 2021. Genome-wide association analysis identified molecular markers associated with important tea flavor-related metabolites. Horticulture Research 8:42

doi: 10.1038/s41438-021-00477-3
[16]

Wu Z, Liao X, Zhang X, Tembrock LR, Broz A. 2020. Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. Journal of Systematics and Evolution 60:160−68

doi: 10.1111/jse.12655
[17]

Biersma EM, Torres-Díaz C, Molina-Montenegro MA, Newsham KK, Vidal MA, et al. 2020. Multiple late-Pleistocene colonisation events of the Antarctic pearlwort Colobanthus quitensis (Caryophyllaceae) reveal the recent arrival of native Antarctic vascular flora. Journal of Biogeography 47:1663−73

doi: 10.1111/jbi.13843
[18]

Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J, et al. 2014. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evolutionary Biology 14:52

doi: 10.1186/1471-2148-14-52
[19]

Kirschner P, Arthofer W, Pfeifenberger S, Záveská E, Schönswetter P, et al. 2021. Performance comparison of two reduced-representation based genome-wide marker-discovery strategies in a multi-taxon phylogeographic framework. Scientific Reports 11:3978

doi: 10.1038/s41598-020-79778-x
[20]

Liu Y, Du H, Li P, Shen Y, Peng H, et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182:162−76.E13

doi: 10.1016/j.cell.2020.05.023
[21]

Tao Y, Luo H, Xu J, Cruickshank A, Zhao X, et al. 2021. Extensive variation within the pan-genome of cultivated and wild sorghum. Nature Plants 7:766−73

doi: 10.1038/s41477-021-00925-x
[22]

Song J, Guan Z, Hu J, Guo C, Yang Z, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants 6:34−45

doi: 10.1038/s41477-019-0577-7
[23]

Magdy M, Ou L, Yu H, Chen R, Zhou Y, et al. 2019. Pan-plastome approach empowers the assessment of genetic variation in cultivatedCapsicum species. Horticulture Research 6:108

doi: 10.1038/s41438-019-0191-x
[24]

Wu Z, Gu C, Tembrock LR, Zhang D, Ge S. 2017. Characterization of the whole chloroplast genome of Chikusichloa mutica and its comparison with other rice tribe (Oryzeae) species. PLoS One 12:e0177553

doi: 10.1371/journal.pone.0177553
[25]

Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology 76:273−97

doi: 10.1007/s11103-011-9762-4
[26]

Cauz-Santos LA, da Costa ZP, Callot C, Cauet S, Zucchi MI, et al. 2020. A repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes. Genome Biology and Evolution 12:1841−57

doi: 10.1093/gbe/evaa155
[27]

Olmstead RG, Kim KJ, Jansen RK, Wagstaff SJ. 2000. The phylogeny of the Asteridae sensu lato based on chloroplast ndhF gene sequences. Molecular Phylogenetics and Evolution 16:96−112

doi: 10.1006/mpev.1999.0769
[28]

Malinova I, Zupok A, Massouh A, Schöttler MA, Meyer EH, et al. 2021. Correction of frameshift mutations in the atpB gene by translational recoding in chloroplasts of Oenothera and tobacco. The Plant Cell 33:1682−705

doi: 10.1093/plcell/koab050
[29]

Wu Z, Ge S. 2012. The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts. Molecular Phylogenetics and Evolution 62:573−78

doi: 10.1016/j.ympev.2011.10.019
[30]

Gu C, Tembrock LR, Johnson NG, Simmons MP, Wu Z. 2016. The complete plastid genome of Lagerstroemia fauriei and loss of rpl2 intron from Lagerstroemia (Lythraceae). PLoS One 11:e0150752

doi: 10.1371/journal.pone.0150752
[31]

Zhou J, Zhang S, Wang J, Shen H, Ai B, et al. 2021. Chloroplast genomes in Populus (salicaceae): Comparisons from an intensively sampled genus reveal dynamic patterns of evolution. Scientific Reports 11:9471

doi: 10.1038/s41598-021-88160-4
[32]

Andreu Sánchez S, Chen W, Stiller J, Zhang G. 2021. Multiple origins of a frameshift insertion in a mitochondrial gene in birds and turtles. GigaScience 10:giaa161

doi: 10.1093/gigascience/giaa161
[33]

Avise JC. 2004. Molecular markers, natural history, and evolution (2nd edition). In The Auk, ed. Lovette IJ. 121:684. Sinauer Associates, Sunderland, Massachusetts. pp. 1298–99 https://doi.org/10.1093/auk/121.4.1298

[34]

Wang Z, Jiang Y, Bi H, Lu Z, Ma Y, et al. 2021. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Molecular Plant 14:208−22

doi: 10.1016/j.molp.2020.11.008
[35]

Guo C, Guo Z, Li D. 2019. Phylogenomic analyses reveal intractable evolutionary history of a temperate bamboo genus (Poaceae: Bambusoideae). Plant Diversity 41:213−19

doi: 10.1016/j.pld.2019.05.003
[36]

Choi JY, Purugganan MD. 2018. Multiple origin but single domestication led to Oryza sativa. G3 Genes|Genomes|Genetics 8:797−803

doi: 10.1534/g3.117.300334
[37]

He W, Chen C, Xiang K, Wang J, Zheng P, et al. 2021. The history and diversity of rice domestication as resolved from 1464 complete plastid genomes. Frontiers in Plant Science 12:781793

doi: 10.3389/fpls.2021.781793
[38]

Huang Y, Wang J, Yang Y, Fan C, Chen J. 2017. Phylogenomic analysis and dynamic evolution of chloroplast genomes in Salicaceae. Frontiers in Plant Science 8:1050

doi: 10.3389/fpls.2017.01050
[39]

Scossa F, Fernie AR. 2021. When a crop goes back to the wild: Feralization. Trends in Plant Science 26:543−45

doi: 10.1016/j.tplants.2021.02.002
[40]

Hall R, van Hattum MWA, Spakman W. 2008. Impact of India–Asia collision on SE Asia: The record in Borneo. Tectonophysics 451:366−89

doi: 10.1016/j.tecto.2007.11.058
[41]

Royer AM, Waite-Himmelwright J, Smith CI. 2020. Strong selection against early generation hybrids in joshua tree hybrid zone not explained by pollinators alone. Frontiers in Plant Science 11:640

doi: 10.3389/fpls.2020.00640
[42]

Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, et al. 2019. Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nature Plants 5:54−62

doi: 10.1038/s41477-018-0329-0
[43]

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9:605−18

doi: 10.1038/nrg2386
[44]

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19:455−77

doi: 10.1089/cmb.2012.0021
[45]

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 31:3350−52

doi: 10.1093/bioinformatics/btv383
[46]

Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962

doi: 10.1371/journal.pone.0163962
[47]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[48]

Ye J, McGinnis S, Madden TL. 2006. BLAST: Improvements for better sequence analysis. Nucleic Acids Research 34:W6−W9

doi: 10.1093/nar/gkl164
[49]

Lehwark P, Greiner S. 2019. GB2sequin - A file converter preparing custom GenBank files for database submission. Genomics 111:759−61

doi: 10.1016/j.ygeno.2018.05.003
[50]

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160−66

doi: 10.1093/bib/bbx108
[51]

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, et al. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34:3299−302

doi: 10.1093/molbev/msx248
[52]

Ginestet C. 2011. ggplot2: Elegant graphics for data analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society) 174:245−46

doi: 10.1111/j.1467-985X.2010.00676_9.x
[53]

Leigh JW, Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6:1110−16

doi: 10.1111/2041-210X.12410
[54]

Li Y, Chao T, Fan Y, Lou D, Wang G. 2019. Population genomics and morphological features underlying the adaptive evolution of the eastern honey bee (Apis cerana). BMC Genomics 20:869

doi: 10.1186/s12864-019-6246-4
[55]

Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[56]

Alexander DH, Lange K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12:246

doi: 10.1186/1471-2105-12-246