[1] |
Wang R. 2002. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? The FASEB Journal 16:1792−98 doi: 10.1096/fj.02-0211hyp |
[2] |
Kuschman HP, Palczewski MB, Thomas DD. 2021. Nitric oxide and hydrogen sulfide: Sibling rivalry in the family of epigenetic regulators. Free Radical Biology Medicine 170:34−43 doi: 10.1016/j.freeradbiomed.2021.01.010 |
[3] |
Corpas FJ. 2019. Hydrogen sulfide: A new warrior against abiotic stress. Trends in Plant Science 24:983−88 doi: 10.1016/j.tplants.2019.08.003 |
[4] |
Ziogas V, Molassiotis A, Fotopoulos V, Tanou G. 2018. Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action. Frontiers in Plant Science 9:1375 doi: 10.3389/fpls.2018.01375 |
[5] |
Huo J, Huang D, Zhang J, Fang H, Wang B, et al. 2018. Hydrogen sulfide: A gaseous molecule in postharvest freshness. Frontiers in Plant Science 9:1172 doi: 10.3389/fpls.2018.01172 |
[6] |
Ali S, Nawaz A, Ejaz S, Haider ST-A, Alam MW, et al. 2019. Effects of hydrogen sulfide on postharvest physiology of fruits and vegetables: An overview. Scientia Horticulturae 243:290−99 doi: 10.1016/j.scienta.2018.08.037 |
[7] |
Li Z, Min X, Zhou Z. 2016. Hydrogen sulfide: A signal molecule in plant cross-adaptation. Frontiers in Plant Science 7:1621 doi: 10.3389/fpls.2016.01621 |
[8] |
Aroca A, Gotor C, Romero LC. 2018. Hydrogen sulfide signaling in plants: Emerging roles of protein persulfidation. Frontiers in Plant Science 9:1369 doi: 10.3389/fpls.2018.01369 |
[9] |
Wilson LG, Bressan RA, Filner P. 1978. Light-dependent emission of hydrogen sulfide from plants. Plant Physiology 61:184−89 doi: 10.1104/pp.61.2.184 |
[10] |
Li Z. 2015. Analysis of some enzymes activities of hydrogen sulfide metabolism in plants. In Methods in Enzymology, Hydrogen Sulfide in Redox Biology, Part B, eds. Cadenas E, Packer L. 555: 356. USA: Academic Press. pp. 253−69 https://doi.org/10.1016/bs.mie.2014.11.035 |
[11] |
Rennenberg H. 1983. Cysteine desulfhydrase activity in cucurbit plants: stimulation by preincubation with L-or D-cysteine. Phytochemistry 22:1557−60 doi: 10.1016/0031-9422(83)80088-0 |
[12] |
Riemenschneider A, Riedel K, Hoefgen R, Papenbrock J, Hesse H. 2005. Impact of reduced O-acetylserine(thiol)lyase isoform contents on potato plant metabolism. Plant Physiology 137:892−900 doi: 10.1104/pp.104.057125 |
[13] |
Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A. 2007. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back. Plant Biology 9:582−88 doi: 10.1055/s-2007-965424 |
[14] |
Léon S, Touraine B, Briat JF, Lobréaux S. 2002. The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochemical Journal 366:557−64 doi: 10.1042/bj20020322 |
[15] |
Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, et al. 2000. β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiology 123:1163−72 doi: 10.1104/pp.123.3.1163 |
[16] |
Arif Y, Hayat S, Yusuf M, Bajguz A. 2021. Hydrogen sulfide: A versatile gaseous molecule in plants. Plant Physiology and Biochemistry 158:372−84 doi: 10.1016/j.plaphy.2020.11.045 |
[17] |
Fang H, Jing T, Liu Z, Zhang L, Jin Z, et al. 2014. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica. Cell Calcium 56:472−81 doi: 10.1016/j.ceca.2014.10.004 |
[18] |
Valivand M, Amooaghaie R, Ahadi A. 2019. Seed priming with H2S and Ca2+ trigger signal memory that induces cross-adaptation against nickel stress in zucchini seedlings. Plant Physiology and Biochemistry 143:286−98 doi: 10.1016/j.plaphy.2019.09.016 |
[19] |
Wu GX, Li DD, Sun CC, Sun SN. 2017. Hydrogen sulfide interacts with Ca2+ to enhance chilling tolerance of cucumber seedlings. Chinese Journal of Biochemistry and Molecular Biology 33:1037−46 doi: 10.13865/j.cnki.cjbmb.2017.10.10 |
[20] |
Fang H, Liu Z, Long Y, Liang Y, Jin Z, et al. 2017. The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis. The Plant Journal 91:1038−50 doi: 10.1111/tpj.13627 |
[21] |
Shen J, Zhang J, Zhou M, Zhou H, Cui B, et al. 2020. Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. The Plant Cell 32:1000−17 doi: 10.1105/tpc.19.00826 |
[22] |
Zhang J, Zhou MJ, Ge ZL, Shen I, Zhou C, et al. 2020. Abscisic acid-triggered guard cell L-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure. Plant, Cell & Environment 43:624−36 doi: 10.1111/pce.13685 |
[23] |
Chen J, Zhou H, Xie Y. 2021. SnRK2.6 phosphorylation/persulfidation: where ABA and H2S signaling meet. Trends in Plant Science 26:1207−9 doi: 10.1016/j.tplants.2021.08.005 |
[24] |
Zhou M, Zhang J, Shen J, Zhou H, Zhao D, et al. 2021. Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis. Molecular Plant 14:921−36 doi: 10.1016/j.molp.2021.03.007 |
[25] |
Chen S, Jia H, Wang X, Shi C, Wang X, et al. 2020. Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells. Molecular Plant 13:732−44 doi: 10.1016/j.molp.2020.01.004 |
[26] |
Al Ubeed HMS, Wills RBH, Bowyer MC, Vuong QV, Golding JB. 2017. Interaction of exogenous hydrogen sulphide and ethylene on senescence of green leafy vegetables. Postharvest Biology and Technology 133:81−7 doi: 10.1016/j.postharvbio.2017.07.010 |
[27] |
Yao G, Wei Z, Li T, Tang J, Huang Z, et al. 2018. Modulation of enhanced antioxidant activity by hydrogen sulfide antagonization of ethylene in tomato fruit ripening. Journal of Agricultural and Food Chemistry 66:10380−7 doi: 10.1021/acs.jafc.8b03951 |
[28] |
Li T, Li Z, Hu K, Hu L, Chen X, et al. 2017. Hydrogen sulfide alleviates kiwifruit ripening and senescence by antagonizing effect of ethylene. HortScience 52:1556−62 doi: 10.21273/HORTSCI12261-17 |
[29] |
Zheng J, Hu L, Hu K, Wu J, Yang F, et al. 2016. Hydrogen sulfide alleviates senescence of fresh-cut apple by regulating antioxidant defense system and senescence-related gene expression. HortScience 51:152−58 doi: 10.21273/HORTSCI.51.2.152 |
[30] |
Ge Y, Hu K, Wang S, Hu L, Chen X, et al. 2017. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene. PLoS One 12:e0180113 doi: 10.1371/journal.pone.0180113 |
[31] |
Wang KLC, Li H, Ecker JR. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14:S131−S151 doi: 10.1105/tpc.001768 |
[32] |
Lin X, Yang R, Dou Y, Zhang W, Du H, et al. 2020. Transcriptome analysis reveals delaying of the ripening and cell-wall degradation of kiwifruit by hydrogen sulfide. Journal of the Science of Food and Agriculture 100:2280−7 doi: 10.1002/jsfa.10260 |
[33] |
Zhang C, Shi JY, Zhu LQ. 2014. Cooperative effects of hydrogen sulfide and nitric oxide on delaying softening and decay of strawberry. International Journal of Agricultural and Biological Engineering 7:114−22 |
[34] |
Zhu L, Du H, Wang W, Zhang W, Shen Y, et al. 2019. Synergistic effect of nitric oxide with hydrogen sulfide on inhibition of ripening and softening of peach fruits during storage. Scientia Horticulturae 256:108591 doi: 10.1016/j.scienta.2019.108591 |
[35] |
Muñoz-Vargas MA, González-Gordo S, Cañas A, López-Jaramillo J, Palma JM, et al. 2018. Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO. Nitric Oxide 81:36−45 doi: 10.1016/j.niox.2018.10.002 |
[36] |
Mukherjee S. 2019. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 82:25−34 doi: 10.1016/j.niox.2018.11.003 |
[37] |
Yao G, Li C, Sun K, Tang J, Huang Z, et al. 2020. Hydrogen sulfide maintained the good appearance and nutrition in post-harvest tomato fruits by antagonizing the effect of ethylene. Frontiers in Plant Science 11:584 doi: 10.3389/fpls.2020.00584 |
[38] |
Hu KD, Wang Q, Hu LY, Gao SP, Wu J, et al. 2014. Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth. PLoS One 9:e85524 doi: 10.1371/journal.pone.0085524 |
[39] |
Li SP, Hu KD, Hu LY, Li YH, Jiang AM, et al. 2014. Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. Journal of Agricultural and Food Chemistry 62:1119−29 doi: 10.1021/jf4047122 |
[40] |
Li Z, Hu K, Zhang F, Li S, Hu L, et al. 2015. Hydrogen sulfide alleviates dark-promoted senescence in postharvest broccoli. HortScience 50:416−20 doi: 10.21273/HORTSCI.50.3.416 |
[41] |
Hu H, Liu D, Li P, Shen W. 2015. Hydrogen sulfide delays leaf yellowing of stored water spinach (Ipomoea aquatica) during dark-induced senescence by delaying chlorophyll breakdown, maintaining energy status and increasing antioxidative capacity. Postharvest Biology and Technology 108:8−20 doi: 10.1016/j.postharvbio.2015.05.003 |
[42] |
Li D, Li L, Ge Z, Limwachiranon J, Ban Z, et al. 2017. Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli. Postharvest Biology and Technology 129:136−42 doi: 10.1016/j.postharvbio.2017.03.017 |
[43] |
Ning Z, Hu K, Zhou Z, Zhao D, Tang J, et al. 2021. IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). Plant Cell Reports 40:157−69 doi: 10.1007/s00299-020-02621-0 |
[44] |
Forlani S, Masiero S, Mizzotti C. 2019. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. Journal of Experimental Botany 70:2993−3006 doi: 10.1093/jxb/erz112 |
[45] |
Zhi H, Dong Y. 2018. Effect of hydrogen sulfide on surface pitting and related cell wall metabolism in sweet cherry during cold storage. Journal of Applied Botany and Food Quality 91:109−13 doi: 10.5073/JABFQ.2018.091.015 |
[46] |
Zhang W, Cao J, Fan X, Jiang W. 2020. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends in Food Science & Technology 99:531−41 doi: 10.1016/j.jpgs.2020.03.024 |
[47] |
Ni ZJ, Hu KD, Song CB, Ma RH, Li ZR, et al. 2016. Hydrogen sulfide alleviates postharvest senescence of grape by modulating the antioxidant defenses. Oxidative Medicine and Cellular Longevity 2016:4715651 doi: 10.1155/2016/4715651 |
[48] |
Chen C, Jiang A, Liu C, Wagstaff C, Zhao Q, et al. 2021. Hydrogen sulfide inhibits the browning of fresh-cut apple by regulating the antioxidant, energy and lipid metabolism. Postharvest Biology and Technology 175:111487 doi: 10.1016/j.postharvbio.2021.111487 |
[49] |
Luo Z, Li D, Du R, Mou W. 2015. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Scientia Horticulturae 183:144−51 doi: 10.1016/j.scienta.2014.12.021 |
[50] |
Aghdam MS, Mahmoudi R, Razavi F, Rabiei V, Soleimani A. 2018. Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation. Scientia Horticulturae 238:264−71 doi: 10.1016/j.scienta.2018.04.063 |
[51] |
Shen Y, Wang W, Zhang W, Zhu L, Li B. 2015. Hydrogen sulfide facilitating enhancement of antioxidant ability and maintainance of fruit quality of kiwifruits during low-temperature storage. Transactions of the Chinese Society of Agricultural Engineering 31:367−72 |
[52] |
Hu H, Shen W, Li P. 2014. Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. International Journal of Food Science & Technology 49:399−409 doi: 10.1111/ijfs.12313 |
[53] |
Liu Z, Li Y, Cao C, Liang S, Ma Y, et al. 2019. The role of H2S in low temperature-induced cucurbitacin C increases in cucumber. Plant Molecular Biology 99:535−44 doi: 10.1007/s11103-019-00834-w |
[54] |
Sun Y, Zhang W, Zeng T, Nie Q, Zhang F, Zhu L. 2015. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism. Food Chemistry 177:376−81 doi: 10.1016/j.foodchem.2015.01.065 |
[55] |
Aghdam MS, Jannatizadeh A, Luo Z, Paliyath G. 2018. Ensuring sufficient intracellular ATP supplying and friendly extracellular ATP signaling attenuates stresses, delays senescence and maintains quality in horticultural crops during postharvest life. Trends in Food Science & Technology 76:67−81 doi: 10.1016/j.jpgs.2018.04.003 |
[56] |
Li D, Limwachiranon J, Li L, Du R, Luo Z. 2016. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit. Food Chemistry 208:272−78 doi: 10.1016/j.foodchem.2016.03.113 |
[57] |
Michaeli S, Fromm H. 2015. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Frontiers in Plant Science 6:419 doi: 10.3389/fpls.2015.00419 |
[58] |
Xu B, Long Y, Feng X, Zhu X, Sai N, et al. 2021. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications 12:1952 doi: 10.1038/s41467-021-21694-3 |
[59] |
Wang Y, Luo Z, Mao L, Ying T. 2016. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit. Food Chemistry 197:333−39 doi: 10.1016/j.foodchem.2015.10.118 |
[60] |
Xu D, Lam SM, Zuo J, Yuan S, Lv J, et al. 2021. Lipidomics reveals the difference of membrane lipid catabolism between chilling injury sensitive and non-sensitive green bell pepper in response to chilling. Postharvest Biology and Technology 182:111714 doi: 10.1016/j.postharvbio.2021.111714 |
[61] |
Moukhtari AE, Cabassa-Hourton C, Farissi M, Savouré A. 2020. How does proline treatment promote salt stress tolerance during crop plant development? Frontiers in Plant Science 11:1127 doi: 10.3389/fpls.2020.01127 |
[62] |
Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15:89−97 doi: 10.1016/j.tplants.2009.11.009 |
[63] |
Tang J, Hu K, Hu L, Li Y, Liu Y, et al. 2014. Hydrogen sulfide acts as a fungicide to alleviate senescence and decay in fresh-cut sweetpotato. HortScience 49:938−43 doi: 10.21273/HORTSCI.49.7.938 |
[64] |
Fu L, Hu K, Hu L, Li Y, Hu L, et al. 2014. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus niger and Penicillium italicum. PLoS One 9:e104206 doi: 10.1371/journal.pone.0104206 |
[65] |
Gadalla MM, Snyder SH. 2010. Hydrogen sulfide as a gasotransmitter. Journal of Neurochemistry 113:14−26 doi: 10.1111/j.1471-4159.2010.06580.x |
[66] |
Murphy B, Bhattacharya R, Mukherjee P. 2019. Hydrogen sulfide signaling in mitochondria and disease. The FASEB Journal 33:13098−125 doi: 10.1096/fj.201901304R |
[67] |
Guo S, Yao G, Ye H, Tang J, Huang Z, et al. 2019. Functional characterization of a cystathionine beta-synthase gene in sulfur metabolism and pathogenicity of Aspergillus niger in pear fruit. Journal of Agricultural and Food Chemistry 67:4435−43 doi: 10.1021/acs.jafc.9b00325 |
[68] |
Saleem M, Fariduddin Q, Janda T. 2021. Multifaceted role of salicylic acid in combating cold stress in plants: A review. Journal of Plant Growth Regulation 40:464−85 doi: 10.1007/s00344-020-10152-x |
[69] |
van Loon LC, Rep M, Pieterse CMJ. 2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology 44:135−62 doi: 10.1146/annurev.phyto.44.070505.143425 |
[70] |
Wu W, Zhang C, Chen L, Li G, Wang Q, et al. 2018. Inhibition of hydrogen sulfide and hypotaurine on Monilinia fructicoladisease in peach fruit. In ISHS Acta Horticulturae 1194: VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits - Ethical and Technological Issues, eds. Artés-Hernández F, Gómez PA, Aguayo E, Artés F. Cartagena, Murcia, Spain: Acta Horticulturae. pp. 257−66 http://doi.org/10.17660/ActaHortic.2018.1194.38 |
[71] |
Mohammadi M, Kazemi H. 2002. Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science 162:491−98 doi: 10.1016/S0168-9452(01)00538-6 |
[72] |
Liu Q, Luo L, Zheng L. 2018. Lignins: Biosynthesis and biological functions in plants. International Journal of Molecular Science 19:335 doi: 10.3390/ijms19020335 |
[73] |
Siddiqui MW, Deshi V, Homa F, Aftab MA, Aftab T. 2021. Inhibitory effects of hydrogen sulfide on oxidative damage and pericarp browning in harvested litchi. Journal of Plant Growth Regulation 40:2560−69 doi: 10.1007/s00344-021-10300-x |
[74] |
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. 2018. Chemical biology of H2S signaling through persulfidation. Chemical Reviews 118:1253−337 doi: 10.1021/acs.chemrev.7b00205 |
[75] |
Corpas FJ, Palma JM. 2020. H2S signaling in plants and applications in agriculture. Journal of Advanced Research 24:131−37 doi: 10.1016/j.jare.2020.03.011 |
[76] |
Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, et al. 2014. Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346:1084−88 doi: 10.1126/science.1259215 |
[77] |
Du X, Jin Z, Liu Z, Liu D, Zhang L, et al. 2021. H2S persulfidated and increased kinase activity of MPK4 to response cold stress in Arabidopsis. Frontiers in Molecular Biosciences 8:635470 doi: 10.3389/fmolb.2021.635470 |
[78] |
Jia H, Chen S, Liu D, Liesche J, Shi C, et al. 2018. Ethylene-induced hydrogen sulfide negatively regulates ethylene biosynthesis by persulfidation of ACO in tomato under osmotic stress. Frontiers in Plant Science 9:1517 doi: 10.3389/fpls.2018.01517 |
[79] |
Chu-Puga Á, González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ. 2019. NADPH Oxidase (Rboh) activity is up regulated during sweet pepper (Capsicum annuum L.) fruit ripening. Antioxidants 8:9 doi: 10.3390/antiox8010009 |
[80] |
Aghdam MS, Palma JM, Corpas FJ. 2020. NADPH as a quality footprinting in horticultural crops marketability. Trends in Food Science & Technology 103:152−61 doi: 10.1016/j.jpgs.2020.07.002 |
[81] |
Corpas FJ, González-Gordo S, Palma JM. 2021. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. Journal of Experimental Botany 72:830−47 doi: 10.1093/jxb/eraa440 |
[82] |
Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. 2020. Inhibition of NADP-malic enzyme activity by H2S and NO in sweet pepper (Capsicum annuum L.) fruits. Physiologia Plantarum 168:278−88 doi: 10.1111/ppl.13000 |
[83] |
Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, et al. 2020. Plant catalases as NO and H2S targets. Redox Biology 34:101525 doi: 10.1016/j.redox.2020.101525 |
[84] |
Corpas FJ, González-Gordo S, Cañas A, Palma JM. 2019. Nitric oxide and hydrogen sulfide in plants: which comes first? Journal of Experimental Botany 70:4391−404 doi: 10.1093/jxb/erz031 |
[85] |
Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. 2021. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends in Plant Science 26:1270−85 doi: 10.1016/j.tplants.2021.07.016 |