[1]

Jonášová M, Prach K. 2004. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecological Engineering 23:15−27

doi: 10.1016/j.ecoleng.2004.06.010
[2]

Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P. 2008. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation 17:2979

doi: 10.1007/s10531-008-9409-1
[3]

Wermelinger B. 2004. Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. Forest Ecology and Management 202:67−82

doi: 10.1016/j.foreco.2004.07.018
[4]

Gugerli F, Gall R, Meier F, Wermelinger B. 2008. Pronounced fluctuations of spruce bark beetle (Scolytinae: Ips typographus) populations do not invoke genetic differentiation. Forest Ecology and Management 256:405−9

doi: 10.1016/j.foreco.2008.04.038
[5]

Mayer F, Piel FB, Cassel-Lundhagen A, Kirichenko N, Grumiau L, et al. 2015. Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation. Molecular Ecology 24:1292−310

doi: 10.1111/mec.13104
[6]

Sallé A, Arthofer W, Lieutier F, Stauffer C, Kerdelhué C. 2007. Phylogeography of a host-specific insect: genetic structure of Ips typographus in Europe does not reflect past fragmentation of its host. Biological Journal of the Linnean Society 90:239−46

doi: 10.1111/j.1095-8312.2007.00720.x
[7]

Montano V, Bertheau C, Doležal P, Krumböck S, Okrouhlík J, et al. 2016. How differential management strategies affect Ips typographus L. dispersal. Forest Ecology and Management 360:195−204

doi: 10.1016/j.foreco.2015.10.037
[8]

Némethy M, Mihálik D, Steifetten Ø, Rošteková V, Mrkvová M, et al. 2018. Genetic differentiation between local populations of Ips typographus in the high Tatra Mountains range. Scandinavian Journal of Forest Research 33:215−21

doi: 10.1080/02827581.2017.1368697
[9]

Bertheau C, Schuler H, Arthofer W, Avtzis DN, Mayer F, et al. 2013. Divergent evolutionary histories of two sympatric spruce bark beetle species. Molecular Ecology 22:3318−32

doi: 10.1111/mec.12296
[10]

Krascsenitsová E, Kozánek M, Ferenčík J, Roller L, Stauffer C, et al. 2013. Impact of the Carpathians on the genetic structure of the spruce bark beetle Ips typographus. Journal of Pest Science 86:669−76

doi: 10.1007/s10340-013-0508-8
[11]

Dowle EJ, Bracewell RR, Pfrender ME, Mock KE, Bentz BJ, et al. 2017. Reproductive isolation and environmental adaptation shape the phylogeography of mountain pine beetle (Dendroctonus ponderosae). Molecular Ecology 26:6071−84

doi: 10.1111/mec.14342
[12]

Powell D, Groβe-Wilde E, Krokene P, Roy A, Chakraborty A, et al. 2021. A highly-contiguous genome assembly of the Eurasian spruce bark beetle, Ips typographus, provides insight into a major forest pest. Communications Biology 4:1059

doi: 10.1038/s42003-021-02602-3
[13]

Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MMS, et al. 2013. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14:198

doi: 10.1186/1471-2164-14-198
[14]

Yuvaraj JK, Roberts RE, Sonntag Y, Hou X, Grosse-Wilde E, et al. 2021. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biology 19:16

doi: 10.1186/s12915-020-00946-6
[15]

Puechmaille SJ. 2016. The program sᴛʀᴜᴄᴛᴜʀᴇ does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16:608−27

doi: 10.1111/1755-0998.12512
[16]

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software sᴛʀᴜᴄᴛᴜʀᴇ: a simulation study. Molecular Ecology 14:2611−20

doi: 10.1111/j.1365-294X.2005.02553.x
[17]

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945−59

doi: 10.1093/genetics/155.2.945
[18]

Yang H, You C, Tsui CKM, Tembrock LR, Wu Z, et al. 2021. Phylogeny and biogeography of the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae) based on SNP markers. Ecology and Evolution 11:153−73

doi: 10.1002/ece3.6982
[19]

Li H, Qu W, Obrycki JJ, Meng L, Zhou X, et al. 2020. Optimizing sample size for population genomic study in a global invasive lady beetle, Harmonia axyridis. Insects 11:290

doi: 10.3390/insects11050290
[20]

Shegelski VA. 2020. Mountain pine beetle dispersal: morphology, genetics, and range expansion. Dissertation. University of Alberta, Alberta

[21]

Foll M, Gaggiotti O. 2008. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977−93

doi: 10.1534/genetics.108.092221
[22]

Whitlock MC, Lotterhos KE. 2015. Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. The American Naturalist 186:S24−S36

doi: 10.1086/682949
[23]

Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564−67

doi: 10.1111/j.1755-0998.2010.02847.x
[24]

Flanagan SP, Jones AG. 2017. Constraints on the FST– heterozygosity outlier approach. Journal of Heredity 108:561−73

doi: 10.1093/jhered/esx048
[25]

Nilssen AC. 1984. Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Annales Entomologici Fennici 50:37−42

[26]

Bertheau C, Salle A, Rossi J-P, Bankhead-dronnet S, Pineau X, et al. 2009. Colonisation of native and exotic conifers by indigenous bark beetles (Coleoptera: Scolytinae) in France. Forest Ecology and Management 258:1619−28

doi: 10.1016/j.foreco.2009.07.020
[27]

Gautier M, Foucaud J, Gharbi K, Cézard T, Galan M, et al. 2013. Estimation of population allele frequencies from next-generation sequencing data: pool-versus individual-based genotyping. Molecular Ecology 22:3766−79

doi: 10.1111/mec.12360
[28]

Schlötterer C, Tobler R, Kofler R, Nolte V. 2014. Sequencing pools of individuals – mining genome-wide polymorphism data without big funding. Nature Reviews Genetics 15:749−63

doi: 10.1038/nrg3803
[29]

Arvidsson S, Fartmann B, Winkler S, Zimmermann W. 2016. Efficient high-throughput SNP discovery and genotyping using normalised Genotyping-by-Sequencing (nGBS). LGC Technical Note: AN-161104.01. https://biosearch-cdn.azureedge.net/assetsv6/efficient-high-throughput-snp-discovery-genotyping-ngbs-app-note.pdf

[30]

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658−59

doi: 10.1093/bioinformatics/btl158
[31]

Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, et al. 2018. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nature Communications 9:2638

doi: 10.1038/s41467-018-05051-5
[32]

Liber M, Duarte I, Maia AT, Oliveira HR. 2021. The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by genotyping-by-sequencing of wild and landrace accessions. Frontiers in Plant Science 12:628439

doi: 10.3389/fpls.2021.628439
[33]

Palumbo F, Qi P, Pinto VB, Devos KM, Barcaccia G. 2019. Construction of the first SNP-based linkage map using genotyping-by-sequencing and mapping of the male-sterility gene in leaf chicory. Frontiers in Plant Science 10:276

doi: 10.3389/fpls.2019.00276
[34]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59

doi: 10.1038/nmeth.1923
[35]

Garrison EP, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. Preprint https://arxiv.org/abs/1207.3907

[36]

Knaus BJ, Grünwald NJ. 2017. ᴠᴄғʀ: a package to manipulate and visualize variant call format data in R. Molecular Ecology Resources 17:44−53

doi: 10.1111/1755-0998.12549
[37]

Gruber B, Unmack PJ, Berry OF, Georges A. 2018. ᴅᴀʀᴛʀ: An ʀ package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Molecular Ecology Resources 18:691−99

doi: 10.1111/1755-0998.12745
[38]

Shen W, Le S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLOS ONE 11:e0163962

doi: 10.1371/journal.pone.0163962
[39]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1016/S0022-2836(05)80360-2
[40]

Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, et al. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36:3420−35

doi: 10.1093/nar/gkn176
[41]

Goudet J, Jombart T. 2020. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.5-7. https://CRAN.R-project.org/package=hierfstat

[42]

Lischer HEL, Excoffier L. 2012. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28:298−99

doi: 10.1093/bioinformatics/btr642
[43]

Kamvar ZN, Tabima JF, Grünwald NJ. 2014. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

doi: 10.7717/peerj.281
[44]

Kamvar ZN, Brooks JC, Grünwald NJ. 2015. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Frontiers in Genetics 6:208

doi: 10.3389/fgene.2015.00208
[45]

RStudio Team. 2021. RStudio: Integrated Development Environment for R. http://www.rstudio.com/

[46]

Chhatre VE, Emerson KJ. 2017. StrAuto: automation and parallelization of STRUCTURE analysis. BMC Bioinformatics 18:192

doi: 10.1186/s12859-017-1593-0
[47]

Li Y, Liu J. 2018. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18:176−77

doi: 10.1111/1755-0998.12719
[48]

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15:1179−91

doi: 10.1111/1755-0998.12387
[49]

R Core Team. 2021. R: A language and environment for statistical computing. http://www.R-project.org/