[1] |
Willer H, Lernoud J. 2019. The world of organic agriculture. Statistics and emerging trends 2019. Research Institute of Organic Agriculture FiBL and IFOAM Organics International. https://orgprints.org/id/eprint/37018/1/willer-lernoud-2019-world-of-organic-low.pdf |
[2] |
NASS. 2019. Organic Farming Highlights. National Agricultural Statistics Service, United States Department of Agriculture. ACH17-21 |
[3] |
Ponisio LC, M'Gonigle LK, Mace KC, Palomino J, de Valpine P, et al. 2015. Diversification practices reduce organic to conventional yield gap. Proceedings of the Royal Society - Biological Sciences 282:20141396 doi: 10.1098/rspb.2014.1396 |
[4] |
Jensen ES, Bedoussac L, Carlsson G, Journet EP, Justes E, et al. 2015. Enhancing yields in organic crop production by eco-functional intensification. Sustainable Agriculture Research 4:42−50 doi: 10.5539/sar.v4n3p42 |
[5] |
Morath SJ. 2018. Hydroponics: The End of Organic? Natural Resources & Environment 33:1−4 |
[6] |
The National Agricultural Law Center. The fight for organic: Hydroponic certification under fire. https://nationalaglawcenter.org/the-fight-for-organic-hydroponic-certification-under-fire |
[7] |
Schmutz U, Wright J, Lennartsson M. 2014. Urban horticulture and organic greenhouse standards. In ISHS Acta Horticulturae 1041: II International Symposium on Organic Greenhouse Horticulture, eds. Dorais M, Bishop SD. Avignon, France: ISHS. pp. 281−86 https://doi.org/10.17660/actahortic.2014.1041.33 |
[8] |
Khan FA, Kurklu A, Ghafoor A, Ali Q, Umair M. 2018. A review on hydroponic greenhouse cultivation for sustainable agriculture. International Journal of Agriculture Environment and Food Sciences 2:59−66 doi: 10.31015/jaefs.18010 |
[9] |
Barbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, et al. 2015. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. International Journal of Environmental Research and Public Health. 12:6879−91 doi: 10.3390/ijerph120606879 |
[10] |
Kozai T, Niu G, Takagaki M. 2020. eds. Plant Factory: an indoor vertical farming system for efficient quality food production. USA: Academic press, Elsevier. 516 pp https://doi.org/10.1016/C2018-0-00969-X |
[11] |
Benke K, Tomkins B. 2017. Future food-production systems: vertical farming and controlled-environment agriculture. Sustainability: Science, Practice and Policy 13:13−26 doi: 10.1080/15487733.2017.1394054 |
[12] |
Williams KA, Nelson JS. 2014. Challenges of using organic fertilizers in hydroponic production systems. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, eds. Snyder RL, Ortega-Farias S, Carlile WR. Brisbane, Australia: ISHS. pp. 365−70 https://doi.org/10.17660/ActaHortic.2016.1112.49 |
[13] |
Shinohara, M, Aoyama C, Fujiwara K, Watanabe A, Ohmori H, Uehara Y, Takano M. 2011. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil science and plant nutrition 57:190−203 doi: 10.1080/00380768.2011.554223 |
[14] |
Saijai, S, Ando A, Inukai R, Shinohara M, Ogawa J. 2016. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics. Bioscience, biotechnology, and biochemistry 80:2247−2254 doi: 10.1080/09168451.2016.1200459 |
[15] |
Burnett SE, Mattson NS, Williams KA. 2016. Substrates and fertilizers for organic container production of herbs, vegetables, and herbaceous ornamental plants grown in greenhouses in the United States. Scientia Horticulturae 208:111−119 doi: 10.1016/j.scienta.2016.01.001 |
[16] |
Norcini JG, Andersen PC, Knox GW. 1991. Light intensity influences leaf physiology and plant growth characteristics of Photinia × fraseri. Journal of American Society for the Horticultural Science. 116:1046−51 doi: 10.21273/JASHS.116.6.1046 |
[17] |
Silva S, Costa EM, Calhau C, Morais RM, Pintado ME. 2017. Anthocyanin extraction from plant tissues: A review. Critical Reviews in Food Science and Nutrition 57:3072−83 doi: 10.1080/10408398.2015.1087963 |
[18] |
Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2:875−77 doi: 10.1038/nprot.2007.102 |
[19] |
Garland JL, Mackowiak CL, Strayer RF, Finger BW. 1997. Integration of waste processing and biomass production systems as part of the KSC Breadboard project. Advances in Space Research 20:1821−26 doi: 10.1016/S0273-1177(97)00847-8 |
[20] |
Lee JG, Lee BY, Lee HJ. 2006. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Scientia Horticulturae 110:119−28 doi: 10.1016/j.scienta.2006.06.013 |
[21] |
Asao T, Kitazawa H, Tomita K, Suyama K, Yamamoto H, et al. 2004. Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Scientia Horticulturae 99:207−14 doi: 10.1016/S0304-4238(03)00098-0 |
[22] |
Netto AT, Campostrini E, de Oliveira JG, Bressan-Smith RE. 2005. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104:199−209 doi: 10.1016/j.scienta.2004.08.013 |
[23] |
Dou H, Niu G, Gu M. 2019. Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy 9:434 doi: 10.3390/agronomy9080434 |
[24] |
Cisneros-Zevallos L. 2020. The power of plants: How fruit and vegetables work as source of nutraceuticals and supplements. International Journal of Food Sciences and Nutrition1−5 doi: 10.1080/09637486.2020.1852194 |
[25] |
Stahl W, Sies H. 2003. Antioxidant activity of carotenoids. Molecular Aspects of Medicine 24:345−351 doi: 10.1016/S0098-2997(03)00030-X |
[26] |
Djidonou D, Leskovar DI. 2019. Seasonal changes in growth, nitrogen nutrition, and yield of hydroponic lettuce. HortScience 54:76−85 doi: 10.21273/HORTSCI13567-18 |
[27] |
Ikeda H, Osawa T. 1981. Nitrate- and ammonium-N absorption by vegetables from nutrient solution containing ammonium nitrate and the resultant change of solution pH. Journal of the Japanese Society for Horticultural Science 50:225−30 doi: 10.2503/jjshs.50.225 |
[28] |
Umar AS, Iqbal M. 2007. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agronomy for Sustainable Development 27:45−57 doi: 10.1051/agro:2006021 |
[29] |
Niu G, Sun Y, Masabni JG. 2018. Impact of low and moderate salinity water on plant performance of leafy vegetables in a recirculating NFT system. Horticulturae 4:6 doi: 10.3390/horticulturae4010006 |
[30] |
Resh HM. 2012. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, Seventh Edition. Boca Raton: CRC Press. 560pp https://doi.org/10.1201/b12500 |
[31] |
Imas P, Bar-Yosef B, Kafkafi U, Ganmore-Neumann R. 1997. Release of carboxylic anions and protons by tomato roots in response to ammonium nitrate ratio and pH in nutrient solution. Plant and Soil 191:27−34 doi: 10.1023/A:1004214814504 |