[1]

Liu S, Liu H, Wu A, Hou Y, An Y, et al. 2017. Construction of fingerprinting for tea plant (Camellia sinensis) accessions using new genomic SSR markers. Molecular Breeding 37:93

doi: 10.1007/s11032-017-0692-y
[2]

Wambulwa MC, Meegahakumbura MK, Kamunya S, Muchugi A, Möller M, et al. 2016. Insights into the genetic relationships and breeding patterns of the african tea germplasm based on nSSR markers and cpDNA sequences. Frontiers in Plant Science 7:1244

doi: 10.3389/fpls.2016.01244
[3]

Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[4]

Liang Y, Shi M. 2015. Advances in tea plant genetics and breeding. Journal of Tea science 35:103−9

doi: 10.13305/j.cnki.jts.2015.02.001
[5]

Barut M, Nadeem MA, Karaköy T, Baloch FS. 2020. DNA fingerprinting and genetic diversity analysis of world quinoa germplasm using iPBS-retrotransposon marker system. Turkish Journal of Agriculture and Forestry 44:479−91

doi: 10.3906/tar-2001-10
[6]

Guney M, Kafkas S, Keles H, Zarifikhosroshahi M, Bujdoso G. 2021. Genetic diversity among some walnut (Juglans regia L.) genotypes by SSR markers. Sustainability 13:6830

doi: 10.3390/su13126830
[7]

Savaş Tuna G, Yücel G, Kaygisiz Aşçioğul T, Ateş D, Eşİyok D, et al. 2020. Molecular cytogenetic characterization of common bean (Phaseolusvulgaris L.) accessions. Turkish Journal of Agriculture and Forestry 44:612−30

doi: 10.3906/tar-1910-33
[8]

Chen T, Wang H, Luo J, Zheng D, Dai S, et al. 2017. Genetic diversity and relationship of tea germplasm resources Camellia sinensis var. assamica cv. Rucheng revealed by ISSR markers. Molecular Plant Breeding 17:16

[9]

Liu Z, Cheng Y, Yang P, Zhao Y, Ning J, Yang Y. 2020. Genetic diversity and structure of Chengbudong tea population revealed by nSSR and cpDNA markers. Journal of Tea Science 40:250−58

[10]

Wu Y, Deng T, Li J, Li Y, Liu S, et al. 2013. Genetic diversity of tea germplasm resource 'Huangjincha' (Camellia sinensis) revealed by AFLP analysis. Journal of Tea Science 33:526−31

doi: 10.13305/j.cnki.jts.2013.06.013
[11]

Ni J, Li J, Dong L, Yang Y, Zhang S, et al. 2010. Genetic diversity and relationship of tea germplasm resources 'Huangjincha' (Camellia sinensis) revealed by ISSR markers. Journal of Tea Science 30:149−56

doi: 10.13305/j.cnki.jts.2010.02.008
[12]

Yang P, Liu Z, Zhao Y, Cheng Y, Ning J, et al. 2021. Evaluation of Jianghua Kucha tea strains based on agronomic and SSR molecular marker relationship analysis. Molecular Plant Breeding 19:2402−9

[13]

Li D, Li D, Yang C, Wang Q, Luo J. 2012. Genetic diversity and relationship of tea germplasm resources Camellia sinensis var. assamica cv. Jianghua revealed by ISSR markers. Journal of Tea Science 32:135−41

[14]

Shen C, Huang Y, Huang Ja, Luo J, Liu C, Liu D. 2007. RAPD analysis for genetic diversity of typical tea populations in Hunan province. Chinese Journal of Agricultural Biotechnology 15:855−60

doi: 10.1017/s147923620800199x
[15]

Shen C, Luo J, Shi Z, Gong Z, Tang H, et al. 2002. Study on genetic polymorphism of tea plants in Anhua Yuntaishan population by RAPD. Journal of Hunan Agricultural University: Natural Science Edition 28:320−25

doi: 10.13331/j.cnki.jhau.2002.04.014
[16]

Taranto F, D'Agostino N, Greco B, Cardi T, Tripodi P. 2016. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genomics 17:943

doi: 10.1186/s12864-016-3297-7
[17]

Wang X, Bao K, Reddy UK, Bai Y, Hammar SA, et al. 2018. The USDA cucumber (Cucumis sativus L.) collection: genetic diversity, population structure, genome-wide association studies, and core collection development. Horticulture Research 5:64

doi: 10.1038/s41438-018-0080-8
[18]

Kim K, Oh Y, Han H, Oh S, Lim H, et al. 2019. Genetic relationships and population structure of pears (Pyrus spp.) assessed with genome-wide SNPs detected by genotyping-by-sequencing. Horticulture, Environment, and Biotechnology 60:945−53

doi: 10.1007/s13580-019-00178-w
[19]

Kobayashi F, Tanaka T, Kanamori H, Wu J, Katayose Y, et al. 2016. Characterization of a mini core collection of Japanese wheat varieties using single-nucleotide polymorphisms generated by genotyping-by-sequencing. Breeding Science 66:213−25

doi: 10.1270/jsbbs.66.213
[20]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[21]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−9

doi: 10.1093/bioinformatics/btp352
[22]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81:559−75

doi: 10.1086/519795
[23]

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19:1655−64

doi: 10.1101/gr.094052.109
[24]

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:1358−70

doi: 10.1111/j.1558-5646.1984.tb05657.x
[25]

Keller MC, Visscher PM, Goddard ME. 2011. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 189:237−49

doi: 10.1534/genetics.111.130922
[26]

Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479−91

doi: 10.1093/genetics/131.2.479
[27]

Ronfort J, Jenczewski E, Bataillon T, Rousset F. 1998. Analysis of population structure in autotetraploid species. Genetics 150:921−30

doi: 10.1093/genetics/150.2.921
[28]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[29]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[30]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[31]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[32]

Zhang Q, Li W, Li K, Nan H, Shi C, et al. 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Molecular Plant 13:935−38

doi: 10.1016/j.molp.2020.04.009
[33]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[34]

Niu S, Song Q, Koiwa H, Qiao D, Zhao D, et al. 2019. Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC Plant Biology 19:328

doi: 10.1186/s12870-019-1917-5
[35]

Yang H, Wei C, Liu H, Wu J, Li Z, et al. 2016. Genetic divergence between Camellia sinensis and its wild relatives revealed via genome-wide SNPs from RAD sequencing. Plos One 11:e0151424

doi: 10.1371/journal.pone.0151424
[36]

Hazra A, Kumar R, Sengupta C, Das S. 2021. Genome-wide SNP discovery from Darjeeling tea cultivars - their functional impacts and application toward population structure and trait associations. Genomics 113:66−78

doi: 10.1016/j.ygeno.2020.11.028
[37]

Luo J, Shi Z, Shen C, Liu C, Gong Z, Huang Y. 2004. The genetic diversity of tea germplasms [Camellia sinensis (L.) O. Kuntze] by RAPD analysis. Acta Agronomica Sinica 30:266−69

[38]

Chen L, Yu F, Yang Y. 2006. Tea germplasm resources and genetic improvement. Beijing: China Agricultural Science and Technology Press

[39]

Jiang H, Yi B, Liang M, Wang P. 2011. Morphological diversity analysis of tea germplasm resources in Yunnan. Journal of Yunnan Agricultural University (Natural Science) 26:833−40

[40]

Yao M, Ma C, Qiao T, Jin J, Chen L. 2012. Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genetics & Genomes 8:205−20

doi: 10.1007/s11295-011-0433-z
[41]

Hu K, He D, Shui X, Hu W. 2017. Genetic diversity of Colocasia esculenta germplasm based on SSR markers. Amino Acids & Biotic Resources 37:40−45

doi: 10.14188/j.ajsh.2015.03.009
[42]

Su W, Wang L, Lei J, Chai S, Liu Y, et al. 2017. Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. Plos One 12:e0172066

doi: 10.1371/journal.pone.0172066
[43]

Wadl PA, Olukolu BA, Branham SE, Jarret RL, Yencho GC, et al. 2018. Genetic diversity and population structure of the USDA Sweetpotato (Ipomoea batatas) germplasm collections using GBSpoly. Frontiers in Plant Science 9:1166

doi: 10.3389/fpls.2018.01166