[1] |
Food and Agriculture Organization. 2020. FAOSTAT Database for 2019. 13 Sept. 2021 www.fao.org/faostat/en/#home |
[2] |
USDA-AMS (United States Department of Agriculture, Agricultural Marketing Service). 2017. Tomatoes. USDA-AMS, Washington, DC. www.agmrc.org/commodities-products/vegetables/tomatoes |
[3] |
Van Ploeg D, Heuvelink E. 2005. Influence of sub-optimal temperature on tomato growth and yield: a review. The Journal of Horticultural Science and Biotechnology 86:652−59 doi: 10.1080/14620316.2005.11511994 |
[4] |
Peet MM, Willits DH, Gardner R. 1997. Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. Journal of Experimental Botany 48:101−11 doi: 10.1093/jxb/48.1.101 |
[5] |
Peet MM, Sato S, Gardner RG. 1998. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell & Environment 21:225−31 doi: 10.1046/j.1365-3040.1998.00281.x |
[6] |
Alsamir M, Mahmood T, Trethowan R, Ahmad N. 2021. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences 28:1654−63 doi: 10.1016/j.sjbs.2020.11.088 |
[7] |
Ayankojo IT, Morgan KT. 2020. Increasing air temperatures and its effects on growth and productivity of tomato in south Florida. Plants 9:1245 doi: 10.3390/plants9091245 |
[8] |
Sato S, Peet MM, Thomas JF. 2000. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell & Environment 23:719−26 doi: 10.1046/j.1365-3040.2000.00589.x |
[9] |
Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, et al. 2006. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of Botany 97:731−38 doi: 10.1093/aob/mcl037 |
[10] |
Iwahori S. 1965. High temperature injuries in tomato. IV. Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature. Journal of the Japanese Society for Horticultural Science 34:33−41 doi: 10.2503/jjshs.34.33 |
[11] |
Iwahori S. 1966. High temperature injuries in tomato. V Fertilization and development of embryo with special reference to the abnormalities caused by high temperature. Journal of the Japanese Society for Horticultural Science 35:379−86 doi: 10.2503/jjshs.35.379 |
[12] |
Levy A, Rabinowitch HD, Kedar N. 1978. Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica 27:211−18 doi: 10.1007/BF00039137 |
[13] |
Giorno F, Wolters-Arts M, Mariani C, Rieu I. 2013. Ensuring reproduction at high temperatures: the heat stress response during anther and pollen development. Plants 2:489−506 doi: 10.3390/plants2030489 |
[14] |
Müller F, Rieu I. 2016. Acclimation to high temperature during pollen development. Plant Reproduction 29:107−18 doi: 10.1007/s00497-016-0282-x |
[15] |
Rieu I, Twell D, Firon N. 2017. Pollen development at high temperature: from acclimation to collapse. Plant Physiology 173:1967−76 doi: 10.1104/pp.16.01644 |
[16] |
Gómez JF, Talle B, Wilson ZA. 2015. Anther and pollen development: a conserved developmental pathway. Journal of Integrative Plant Biology 57:876−91 doi: 10.1111/jipb.12425 |
[17] |
Sato S, Peet MM, Thomas JF. 2002. Determining critical pre- and post- anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. Journal of Experimental Botany 53:1187−95 doi: 10.1093/jexbot/53.371.1187 |
[18] |
Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, et al. 2014. Tomato Male sterile 10 35 is essential for pollen development and meiosis in anthers. Journal of Experimental Botany 65:6693−709 doi: 10.1093/jxb/eru389 |
[19] |
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. 2014. Chromosome segregation in plant meiosis. Frontiers in plant science 5:279 doi: 10.3389/fpls.2014.00279 |
[20] |
Kumar P, Edelstein M, Cardarelli M, Ferri E, Colla G. 2015. Grafting affects growth, yield, nutrient uptake, and partitioning under cadmium stress in tomato. HortScience 50:1654−61 doi: 10.21273/HORTSCI.50.11.1654 |
[21] |
Singh H, Kumar P, Chaudhari S, Edelstein M. 2017. Tomato grafting: a global perspective. HortScience 52:1328−36 doi: 10.21273/HORTSCI11996-17 |
[22] |
Li H, Zhu Y, Rangu M, Wu X, Bhatti S, et al. 2018. Identification of heat-induced proteomes in tomato microspores using LCM-proteomics analysis. Single Cell Biology 7:173 doi: 10.4172/2168-9431.1000173 |
[23] |
Yang S, Li H, Bhatti S, Zhou S, Yang Y, et al. 2020. The Al-induced proteomes of epidermal and outer cortical cells in root apex of cherry tomato 'LA 2710'. Journal of proteomics 211:103560 doi: 10.1016/j.jprot.2019.103560 |
[24] |
Bokvaj P, Hafidh S, Honys D. 2015. Transcriptome profiling of male gametophyte development in Nicotiana tabacum. Genomics data 3:106−11 doi: 10.1016/j.gdata.2014.12.002 |
[25] |
Martin LBB, Nicolas P, Matas AJ, Shinozaki Y, Catalá C, et al. 2016. Laser microdissection of tomato fruit cell and tissue types for transcriptome profiling. Nature Protocols 11:2376−88 doi: 10.1038/nprot.2016.146 |
[26] |
Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, et al. 2011. Evaluation of different multidimensional LC–MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. Journal of proteome research 10:4647−60 doi: 10.1021/pr200455s |
[27] |
Chen JW, Scaria J, Mao C, Sobral B, Zhang S, et al. 2013. Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. Journal of proteome research 12:1151−61 doi: 10.1021/pr3007528 |
[28] |
Yang Q, Wu J, Li C, Wei Y, Sheng O, et al. 2012. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Molecular & Cellular Proteomics 11:1853−69 doi: 10.1074/mcp.M112.022079 |
[29] |
Ye Z, Sangireddy S, Okekeogbu I, Zhou S, Yu CL, et al. 2016. Drought-induced leaf proteome changes in switchgrass seedlings. International Journal of Molecular Sciences 17:1251 doi: 10.3390/ijms17081251 |
[30] |
Zhou S, Palmer M, Zhou J, Bhatti S, Howe KJ, et al. 2013. Differential root proteome expression in tomato genotypes with contrasting drought tolerance exposed to dehydration. Journal of the American Society for Horticultural Science 138:131−41 doi: 10.21273/JASHS.138.2.131 |
[31] |
Zhou S, Okekeogbu I, Sangireddy S, Ye Z, Li H, et al. 2016. Proteome modification in tomato plants upon long-term aluminum treatment. Journal of Proteome Research 15:1670−84 doi: 10.1021/acs.jproteome.6b00128 |
[32] |
Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, et al. 2009. Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiology 151:1758−68 doi: 10.1104/pp.109.145169 |
[33] |
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al. 2019. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47:D607−D613 doi: 10.1093/nar/gky1131 |
[34] |
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. 2019. Cytoscape StringApp: network analysis and visualization of proteomics data. Journal of Proteome Research 18:623−32 doi: 10.1021/acs.jproteome.8b00702 |
[35] |
Flower DR, North ACT, Sansom CE. 2000. The lipocalin protein family: structural and sequence overview. Biochimica et Biophysica Acta 1482:9−24 doi: 10.1016/S0167-4838(00)00148-5 |
[36] |
Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, et al. 2000. Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. The Plant Journal 22:355−65 doi: 10.1046/j.1365-313x.2000.00746.x |
[37] |
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, et al. 2021. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nature Communications 12:1−15 doi: 10.1038/s41467-021-23786-6 |
[38] |
Scharf KD, Heider H, Höhfeld I, Lyck R, Schmidt E, et al. 1998. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Molecular and Cellular Biology 18:2240−51 doi: 10.1128/MCB.18.4.2240 |
[39] |
Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, et al. 2016. HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiology 170:2461−77 doi: 10.1104/pp.15.01913 |
[40] |
Liu HC, Charng YY. 2013. Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant physiology 163:276−90 doi: 10.1104/pp.113.221168 |
[41] |
Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, et al. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143:251−62 doi: 10.1104/pp.106.091322 |
[42] |
Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, et al. 2006. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Molecular Biology 60:759−72 doi: 10.1007/s11103-005-5750-x |
[43] |
Dahiya S, Saini V, Kumar P, Kumar A. 2019. Protein-Protein interaction network analyses of human WNT proteins involved in neural development. Bioinformation 15:307 doi: 10.6026/97320630015307 |
[44] |
Keller M, SPOT-ITN Consortium, Simm S. 2018. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen. BMC Genomics 19:1−20 doi: 10.1186/s12864-018-4824-5 |
[45] |
Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37:118−25 doi: 10.1016/j.tibs.2011.11.007 |
[46] |
Al-Whaibi MH. 2011. Plant heat-shock proteins: a mini review. Journal of King Saud University - Science 23:139−50 doi: 10.1016/j.jksus.2010.06.022 |
[47] |
Ding H, Mo S, Qian Y, Yuan G, Wu X, et al. 2020. Integrated proteome and transcriptome analyses revealed key factors involved in tomato (Solanum lycopersicum) under high temperature stress. Food and Energy Security 9:e239 doi: 10.1002/fes3.239 |
[48] |
Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, et al. 2015. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant, Cell & Environment 38:693−709 doi: 10.1111/pce.12426 |
[49] |
Bita CE, Zenoni S, Vriezen WH, Mariani C, Pezzotti M, et al. 2011. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 12:384 doi: 10.1186/1471-2164-12-384 |
[50] |
Frank G, Pressman E, Ophir R, Althan L, Shaked R, et al. 2009. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of Experimental Botany 60:3891−908 doi: 10.1093/jxb/erp234 |
[51] |
Männisto PT, Venäläinen J, Jalkanen A, García-Horsman JA. 2007. Prolyl oligopeptidase: a potential target for the treatment of cognitive disorders. Drug News & Perspectives 20:293−305 doi: 10.1358/dnp.2007.20.5.1120216 |
[52] |
Jegadeesan S, Chaturvedi P, Ghatak A, Pressman E, Meir S, et al. 2018. Proteomics of heat-stress and ethylene-mediated thermotolerance mechanisms in tomato pollen grains. Frontiers in Plant Science 9:1558 doi: 10.3389/fpls.2018.01558 |
[53] |
Bang S, Min CK, Ha NY, Choi MS, Kim IS, et al. 2016. Inhibition of eukaryotic translation by tetratricopeptide-repeat proteins of Orientia tsutsugamushi. Journal of Microbiology 54:136−44 doi: 10.1007/s12275-016-5599-5 |
[54] |
Ohashi-Ito K, Oda Y, Fukuda H. 2010. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. The Plant Cell 22:3461−73 doi: 10.1105/tpc.110.075036 |
[55] |
Cao W, Liu N, Tang S, Bao L, Shen L, et al. 2008. Acetyl-Coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochimica et Biophysica Acta 1780:873−80 doi: 10.1016/j.bbagen.2008.02.007 |
[56] |
Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS. 2006. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology 140:1297−305 doi: 10.1104/pp.105.074898 |
[57] |
Hooper JD, Nicol DL, Dickinson JL, Eyre HJ, Scarman AL, et al. 1999. Testisin, a new human serine proteinase expressed by premeiotic testicular germ cells and lost in testicular germ cell tumors. Cancer Research 59:3199−205 |
[58] |
Hinek A. 1996. Biological roles of the non-integrin elastin/laminin receptor. Biological Chemistry 377:471−80 |
[59] |
Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S,. 2013. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Frontiers in Plant Science 4:315 doi: 10.3389/fpls.2013.00315 |
[60] |
Liu H, Yu C, Li H, Ouyang B, Wang T, et al. 2015. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. Plant Science 231:198−211 doi: 10.1016/j.plantsci.2014.12.006 |
[61] |
Hirose T, Hashida Y, Aoki N, Okamura M, Yonekura M, et al. 2014. Analysis of gene-disruption mutants of a sucrose phosphate synthase gene in rice, OsSPS1, shows the importance of sucrose synthesis in pollen germination. Plant Science 225:102−6 doi: 10.1016/j.plantsci.2014.05.018 |
[62] |
Santiago JP, Sharkey TD. 2019. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant, Cell & Environment 42:2759−75 doi: 10.1111/pce.13576 |
[63] |
Yu J, Loh K, Song ZY, Yang HQ, Zhang Y, et al. 2018. Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutrition & Diabetes 8:1−10 doi: 10.1038/s41387-018-0045-x |
[64] |
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, et al. 2014. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Molecular & Cellular Proteomics 13:295−310 doi: 10.1074/mcp.M113.028100 |
[65] |
Tang X, Zhang Z, Zhang W, Zhao X, Li X, et al. 2010. Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiology 154:1855−1870 doi: 10.1104/pp.110.161661 |
[66] |
Panigrahi SK, Manterola M, Wolgemuth DJ. 2017. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins. PLoS One 12:e0173926 doi: 10.1371/journal.pone.0173926 |
[67] |
Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H. 2001. Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). PNAS 98:12295−300 doi: 10.1073/pnas.211423998 |
[68] |
Ide M, Masuda K, Tsugama D, Fujino K. 2019. Death of female flower microsporocytes progresses independently of meiosis-like process and can be accelerated by specific transcripts in Asparagus officinalis. Scientific Reports 9:2703 doi: 10.1038/s41598-019-39125-1 |
[69] |
Singh MB, Lohani N, Bhalla PL. 2021. The Role of endoplasmic reticulum stress response in pollen development and heat stress tolerance. Frontiers in Plant Science 12:661062 doi: 10.3389/fpls.2021.661062 |
[70] |
Yang Y, Ma F, Liu Z, Su Q, Liu Y, et al. 2019. The ER-localized Ca2+-binding protein calreticulin couples ER stress to autophagy by associating with microtubule-associated protein 1A/1B light chain 3. Journal of Biological Chemistry 294:772−82 doi: 10.1074/jbc.RA118.005166 |
[71] |
Buchberger A, Bukau B, Sommer T. 2010. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Molecular Cell 40:238−52 doi: 10.1016/j.molcel.2010.10.001 |
[72] |
Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324−32 doi: 10.1038/nature10317 |
[73] |
Li L, Lü S, Li R. 2017. The Arabidopsis endoplasmic reticulum associated degradation pathways are involved in the regulation of heat stress response. Biochemical and Biophysical Research Communications 487:362−67 doi: 10.1016/j.bbrc.2017.04.066 |
[74] |
Sugio A, Dreos R, Aparicio F, Maule AJ. 2009. The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. The Plant Cell 21:642−54 doi: 10.1105/tpc.108.062596 |
[75] |
Gidalevitz T, Prahlad V, Morimoto RI. 2011. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harbor Perspectives in Biology 3:a009704 doi: 10.1101/cshperspect.a009704 |
[76] |
Kobayashi T, Kobayashi E, Sato S, Hotta Y, Miyajima N, et al. 1994. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Research 1:15−26 doi: 10.1093/dnares/1.1.15 |
[77] |
Glover J, Grelon M, Craig S, Chaudhury A, Dennis E. 1998. Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. The Plant Journal 15:345−56 doi: 10.1046/j.1365-313X.1998.00216.x |
[78] |
Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. 2018. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. PNAS 115:E10041−E10048 doi: 10.1073/pnas.1810457115 |