[1]

Boutigny AL, Dohin N, Pornin D, Rolland M. 2020. Overview and detectability of the genetic modifications in ornamental plants. Horticulture Research 7:11

doi: 10.1038/s41438-019-0232-5
[2]

Hall CR, Hodges AW, Khachatryan H, Palma MA. 2020. Economic contributions of the green industry in the United States in 2018. Journal of Environmental Horticulture 38:73−79

doi: 10.24266/0738-2898-38.3.73
[3]

Ramirez-Torres F, Ghogare R, Stowe E, Cerdá-Bennasser P, Lobato-Gómez M, et al. 2021. Genome editing in fruit, ornamental, and industrial crops. Transgenic Research 30:499−528

doi: 10.1007/s11248-021-00240-3
[4]

Bashandy H, Teeri TH. 2017. Genetically engineered orange petunias on the market. Planta 246:277−80

doi: 10.1007/s00425-017-2722-8
[5]

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, et al. 2016. Advancing crop transformation in the era of genome editing. The Plant Cell 28:1510−20

doi: 10.1105/tpc.16.00196
[6]

Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, et al. 2019. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 8:38

doi: 10.3390/plants8020038
[7]

Nagle M, Déjardin A, Pilate G, Strauss SH. 2018. Opportunities for innovation in genetic transformation of forest trees. Frontiers in Plant Science 9:1443

doi: 10.3389/fpls.2018.01443
[8]

Luo G, Palmgren M. 2021. GRF-GIF chimeras boost plant regeneration. Trends in Plant Science 26:201−4

doi: 10.1016/j.tplants.2020.12.001
[9]

Zheng T, Li P, Li L, Zhang Q. 2021. Research advances in and prospects of ornamental plant genomics. Horticulture Research 8:65

doi: 10.1038/s41438-021-00499-x
[10]

Bratlie S, Halvorsen K, Myskja BK, Mellegård H, Bjorvatn C, et al. 2019. A novel governance framework for GMO: A tiered, more flexible regulation for GMOs would help to stimulate innovation and public debate. EMBO Reports 20:e47812

doi: 10.15252/embr.201947812
[11]

Steward FC, Mapes MO, Mears K. 1958. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cell. American Journal of Botany 45:705−8

doi: 10.1002/j.1537-2197.1958.tb10599.x
[12]

Jha P, Ochatt SJ, Kumar V. 2020. WUSCHEL: A master regulator in plant growth signaling. Plant Cell Reports 39:431−44

doi: 10.1007/s00299-020-02511-5
[13]

Lopes FL, Galvan-Ampudia C, Landrein B. 2021. WUSCHEL in the shoot apical meristem: old player, new tricks. Journal of Experimental Botany 72:1527−35

doi: 10.1093/jxb/eraa572
[14]

Laux T, Mayer KFX, Berger J, Jurgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87−96

doi: 10.1242/dev.122.1.87
[15]

Zuo J, Niu Q, Frugis G, Chua NH. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal 30:349−59

doi: 10.1046/j.1365-313x.2002.01289.x
[16]

Zheng W, Zhang X, Yang Z, Wu J, Li F, et al. 2014. AtWuschel promotes formation of the embryogenic callus in Gossypium hirsutum. PLoS One 9:e87502

doi: 10.1371/journal.pone.0087502
[17]

Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, et al. 2013. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Reports 32:675−86

doi: 10.1007/s00299-013-1402-9
[18]

Kadri A, Grenier De March G, Guerineau F, Cosson V, Ratet P. 2021. WUSCHEL overexpression promotes callogenesis and somatic embryogenesis in Medicago truncatula Gaertn. Plants 10:715

doi: 10.3390/plants10040715
[19]

Gallois JL, Woodward C, Reddy GV, Sablowski R. 2002. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207−17

doi: 10.1242/dev.129.13.3207
[20]

Rashid SZ, Yamaji N, Kyo M. 2007. Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco. Plant Cell Reports 26:1449−55

doi: 10.1007/s00299-007-0342-7
[21]

Jha P, Kumar V. 2018. BABY BOOM (BBM): A candidate transcription factor gene in plant biotechnology. Biotechnology Letters 40:1467−75

doi: 10.1007/s10529-018-2613-5
[22]

Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell 14:1737−49

doi: 10.1105/tpc.001941
[23]

Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports 30:1107−15

doi: 10.1007/s00299-011-1018-x
[24]

Srinivasan C, Liu Z, Heidmann I, Supena EDJ, Fukuoka H, et al. 2007. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341

doi: 10.1007/s00425-006-0358-1
[25]

Deng W, Luo K, Li Z, Yang Y. 2009. A novel method for induction of plant regeneration via somatic embryogenesis. Plant Science 177:43−48

doi: 10.1016/j.plantsci.2009.03.009
[26]

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015

doi: 10.1105/tpc.16.00124
[27]

Mookkan M, Nelson-Vasilchik K, Hague J, Zhang ZJ, Kausch AP. 2017. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports 36:1477−91

doi: 10.1007/s00299-017-2169-1
[28]

Mookkan M, Nelson-Vasilchik K, Hague J, Kausch A, Zhang ZJ. 2018. Morphogenic regulator-mediated transformation of maize inbred B73. Current Protocols in Plant Biology 3:e20075

doi: 10.1002/cppb.20075
[29]

Lowe K, la Rota M, Hoerster G, Hastings C, Wang N, et al. 2018. Rapid genotype "independent" Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology - Plant 54:240−52

doi: 10.1007/s11627-018-9905-2
[30]

Kim JH. 2019. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Reports 52:227−38

doi: 10.5483/BMBRep.2019.52.4.051
[31]

Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B. 2015. Growth-regulating factors (GRFs): A small transcription factor family with important functions in plant biology. Molecular Plant 8:998−1010

doi: 10.1016/j.molp.2015.01.013
[32]

Liebsch D, Palatnik JF. 2020. MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Current Opinion in Plant Biology 53:31−42

doi: 10.1016/j.pbi.2019.09.008
[33]

Kong J, Martin-Ortigosa S, Finer J, Orchard N, Gunadi A, et al. 2020. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Frontiers in Plant Science 11:572319

doi: 10.3389/fpls.2020.572319
[34]

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79

doi: 10.1038/s41587-020-0703-0
[35]

Hayta S, Smedley MA, Demir SU, Blundell R, Hinchliffe A, et al. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15:121

doi: 10.1186/s13007-019-0503-z
[36]

Ishida Y, Tsunashima M, Hiei Y, Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. In Agrobacterium Protocols, ed. Wang K. 1223: XIV, 368. New York: Springer, New York. pp. 189−98 https://doi.org/10.1007/978-1-4939-1695-5_15

[37]

Zhang Q, Zhang Y, Lu M, Chai Y, Jiang Y, et al. 2019. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize. Plant Physiology 181:1441−48

doi: 10.1104/pp.19.00767
[38]

Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, et al. 2020. Plant gene editing through de novo induction of meristems. Nature Biotechnology 38:84−89

doi: 10.1038/s41587-019-0337-2
[39]

Huang D, Kosentka PZ, Liu W. 2021. Synthetic biology approaches in regulation of targeted gene expression. Current Opinion in Plant Biology 63:102036

doi: 10.1016/j.pbi.2021.102036
[40]

Liu W, Stewart CN Jr. 2016. Plant synthetic promoters and transcription factors. Current Opinion in Biotechnology 37:36−44

doi: 10.1016/j.copbio.2015.10.001
[41]

Richael CM, Kalyaeva M, Chretien RC, Yan H, Adimulam S, et al. 2008. Cytokinin vectors mediate marker-free and backbone-free plant transformation. Transgenic Research 17:905−71

doi: 10.1007/s11248-008-9175-6
[42]

Liu W, Rudis MR, Cheplick MH, Millwood RJ, Yang J, et al. 2020. Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Reports 39:245−57

doi: 10.1007/s00299-019-02488-w
[43]

Ondzighi-Assoume CA, Willis JD, Ouma WK, Allen SM, King Z, et al. 2019. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.). Biotechnology for Biofuels 12:290

doi: 10.1186/s13068-019-1632-3
[44]

Luo K, Zheng X, Chen Y, Xiao Y, Zhao D, et al. 2006. The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Reports 25:403−9

doi: 10.1007/s00299-005-0051-z
[45]

Lowe K, Hoerster G, Sun X, Rasco-Gaunt S, Lazerri P, et al. 2003. Maize LEC1 improves transformation in both maize and wheat. Plant Biotechnology 2002 and Beyond, Proceedings of the 10th IAPTC&B Congress, Disney's Coronado Springs Resort, in Orlando, Florida, USA, 2002. Netherland: Springer, Dordrecht. pp. 283−84 https://doi.org/10.1007/978-94-017-2679-5_57

[46]

Takada S, Hibara K, Ishida T, Tasaka M. 2001. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127−35

doi: 10.1242/dev.128.7.1127
[47]

Banno H, Ikeda Y, Niu QW, Chua NH. 2001. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. The Plant Cell 13:2609−18

doi: 10.1105/tpc.010234
[48]

Kareem A, Durgaprasad K, Sugimoto K, Du Y, Pulianmackal AJ, et al. 2015. PLETHORA genes control regeneration by a two-step mechanism. Current Biology 25:1017−30

doi: 10.1016/j.cub.2015.02.022
[49]

Iwase A, Mita K, Nonaka S, Ikeuchi M, Koizuka C, et al. 2015. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research 128:389−97

doi: 10.1007/s10265-015-0714-y
[50]

Dai X, Liu Z, Qiao M, Li J, Li S, et al. 2017. ARR12 promotes de novo shoot regeneration in Arabidopsis thaliana via activation of WUSCHEL expression. Journal of Integrative Plant Biology 59:747−58

doi: 10.1111/jipb.12567
[51]

Rashid SZ, Kyo M. 2009. Ectopic expression of WOX5 dramatically alters root-tip morphology in transgenic tobacco. Transgenic Plant Journal 3:92−96

[52]

Shiota H, Satoh R, Watabe K, Harada H, Kamada H. 1998. C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant and Cell Physiology 39:1184−93

doi: 10.1093/oxfordjournals.pcp.a029319
[53]

Luerssen H, Kirik VI, Herrmann P, Miséra S. 1998. FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. The Plant Journal 15:755−64

doi: 10.1046/j.1365-313X.1998.00259.x
[54]

Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE. 2003. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiology 133:653−63

doi: 10.1104/pp.103.023499
[55]

Thakare D, Tang W, Hill K, Perry SE. 2008. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean. Plant Physiology 146:1663−72

doi: 10.1104/pp.108.115832
[56]

Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, et al. 2003. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. The Plant Cell 15:5−18

doi: 10.1105/tpc.006973
[57]

Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, et al. 2001. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology 127:803−16

doi: 10.1104/pp.010324
[58]

Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K. 2011. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Current Biology 21:1277−81

doi: 10.1016/j.cub.2011.07.001
[59]

Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG. 2010. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Reports 29:723−34

doi: 10.1007/s00299-010-0859-z
[60]

Xiao Y, Chen Y, Ding Y, Wu J, Wang P, et al. 2018. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration. Plant Science 270:157−65

doi: 10.1016/j.plantsci.2018.02.018
[61]

Suo J, Zhou C, Zeng Z, Li X, Bian H, et al. 2021. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis. BMC Plant Biology 21:145

doi: 10.1186/s12870-021-02922-w
[62]

Lutz KA, Martin C, Khairzada S, Maliga P. 2015. Steroid-inducible BABY BOOM system for development of fertile Arabidopsis thaliana plants after prolonged tissue culture. Plant Cell Reports 34:1849−56

doi: 10.1007/s00299-015-1832-7
[63]

Morcillo F, Gallard A, Pillot M, Jouannic S, Aberlenc-Bertossi F, et al. 2007. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm. Planta 226:1353−62

doi: 10.1007/s00425-007-0574-3
[64]

El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbé H, et al. 2010. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Molecular Biology 74:313−26

doi: 10.1007/s11103-010-9674-8
[65]

Florez SL, Erwin RL, Maximova SN, Guiltinan MJ, Curtis WR. 2015. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biology 15:121

doi: 10.1186/s12870-015-0479-4
[66]

Hoerster G, Wang N, Ryan L, Wu E, Anand A, et al. 2020. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cellular & Developmental Biology - Plant 56:265−79

doi: 10.1007/s11627-019-10042-2
[67]

Aregawi K, Shen J, Pierroz G, Sharma MK, Dahlberg J, et al. 2021. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnology Journal

doi: 10.1111/pbi.13754
[68]

Feng Q, Xiao L, He Y, Liu M, Wang J, et al. 2021. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene. Journal of Integrative Plant Biology 63:2038−42

doi: 10.1111/jipb.13199