[1]

Zhao L, Tan L, Zhu Z, Xiao L, Xie D, et al. 2015. PAY1 improves plant architecture and enhances grain yield in rice. The Plant Journal 83:528−36

doi: 10.1111/tpj.12905
[2]

Chen S, Gao R, Wang H, Wen M, Xiao J, et al. 2015. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica 203:583−94

doi: 10.1007/s10681-014-1275-1
[3]

Pan Q, Xu Y, Li K, Peng Y, Zhan W, et al. 2017. The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiology 175:858−73

doi: 10.1104/pp.17.00709
[4]

Wang Y, Li J. 2008. Molecular basis of plant architecture. Annual Review of Plant Biology 59:253−79

doi: 10.1146/annurev.arplant.59.032607.092902
[5]

Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, et al. 2002. Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Research 9:11−17

doi: 10.1093/dnares/9.1.11
[6]

Wang Y, Bo K, Gu X, Pan J, Li Y, et al. 2020. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture Research 7:3

doi: 10.1038/s41438-019-0226-3
[7]

Li Y, Yang L, Pathak M, Li D, He X, et al. 2011. Fine genetic mapping of cp: a recessive gene for compact (dwarf) plant architecture in cucumber, Cucumis sativus L. Theoretical and Applied Genetics 123:973−83

doi: 10.1007/s00122-011-1640-6
[8]

Lin T, Wang S, Zhong Y, Gao D, Cui Q, et al. 2016. A truncated f-box protein confers the dwarfism in cucumber. Journal of Genetics and Genomics 43:223−26

doi: 10.1016/j.jgg.2016.01.007
[9]

Hou S, Niu H, Tao Q, Wang S, Gong Z, et al. 2017. A mutant in the CsDET2 gene leads to a systemic brassinosteriod deficiency and super compact phenotype in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 130:1693−703

doi: 10.1007/s00122-017-2919-z
[10]

Wang H, Li W, Qin Y, Pan Y, Wang X, et al. 2017. The cytochrome p450 gene CsCYP85A1 is a putative candidate for Super compact-1 (Scp-1) plant architecture mutation in cucumber (Cucumis sativus L.). Frontiers in Plant Science 8:266

doi: 10.3389/fpls.2017.00266
[11]

Xu L, Wang C, Cao W, Zhou S, Wu T. 2018. CLAVATA1-type receptor-like kinase CsCLAVATA1 is a putative candidate gene for dwarf mutation in cucumber. Molecular Genetics and Genomics 293:1393−405

doi: 10.1007/s00438-018-1467-9
[12]

Chen F, Fu B, Pan Y, Zhang C, Wen H, et al. 2017. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. Theoretical and Applied Genetics 130:1549−58

doi: 10.1007/s00122-017-2909-1
[13]

Gao D, Zhang C, Zhang S, Hu B, Wang S, et al. 2017. Mutation in a novel gene SMALL AND CORDATE LEAF 1 affects leaf morphology in cucumber. Journal of Integrative Plant Biology 59:736−41

doi: 10.1111/jipb.12558
[14]

Yang L, Liu H, Zhao J, Pan Y, Cheng S, et al. 2018. LITTLELEAF (LL) encodes a WD40 repeat domain-containing protein associated with organ size variation in cucumber. The Plant Journal 95:834−47

doi: 10.1111/tpj.13991
[15]

Wasteneys GO. 2002. Microtubule organization in the green kingdom: chaos or self-order? Journal of Cell Science 115:1345−54

doi: 10.1242/jcs.115.7.1345
[16]

Stoppin-Mellet V, Gaillard J, Vantard M. 2003. Plant katanin, a microtubule severing protein. Cell Biology International 27:279

doi: 10.1016/S1065-6995(02)00324-4
[17]

Hamada T. 2007. Microtubule-associated proteins in higher plants. Journal of Plant Research 120:79−98

doi: 10.1007/s10265-006-0057-9
[18]

Lin D, Cao L, Zhou Z, Zhu L, Ehrhardt D, et al. 2013. Rho GTPase signaling activates microtubule severing to promote microtubule ordering in Arabidopsis. Current Biology 23:290−97

doi: 10.1016/j.cub.2013.01.022
[19]

Wan L, Wang X, Li S, Hu J, Huang W, et al. 2014. Overexpression of OsKTN80a, a katanin P80 ortholog, caused the repressed cell elongation and stalled cell division mediated by microtubule apparatus defects in primary root in Oryza sativa. Journal of Integrative Plant Biology 56:622−34

doi: 10.1111/jipb.12170
[20]

Wang G, Wang C, Liu W, Ma Y, Dong L, et al. 2018. Augmin antagonizes katanin at microtubule crossovers to control the dynamic organization of plant cortical arrays. Current Biology 28:1311−1317.E3

doi: 10.1016/j.cub.2018.03.007
[21]

Juranić M, Srilunchang KO, Krohn NG, Leljak-Levanic D, Sprunck S, et al. 2012. Germline-specific MATH-BTB substrate adaptor MAB1 regulates spindle length and nuclei identity in maize. The Plant Cell 24:4974−91

doi: 10.1105/tpc.112.107169
[22]

Luptovčiak I, Samakovli D, Komis G, Šamaj J. 2017. KATANIN 1 is essential for embryogenesis and seed formation in Arabidopsis. Frontiers in Plant Science 8:728

doi: 10.3389/fpls.2017.00728
[23]

Bichet A, Desnos T, Turner S, Grandjean O, Höfte H. 2001. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis. The Plant Journal 25:137−48

doi: 10.1111/j.1365-313X.2001.00946.x
[24]

Burk DH, Liu B, Zhong R, Morrison WH, Ye Z. 2001. A katanin-like protein regulates normal cell wall Biosynthesis and cell elongation. The Plant Cell 13:807−27

doi: 10.1105/tpc.13.4.807
[25]

Meier C, Bouquin T, Nielsen ME, Raventos D, Mattsson O, et al. 2001. Gibberellin response mutants identified by luciferase imaging. The Plant Journal 25:509−19

doi: 10.1046/j.1365-313x.2001.00980.x
[26]

Bouquin T, Mattsson O, Naested H, Foster R, Mundy J. 2003. The Arabidopsis lue1 mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. Journal of Cell Science 116:791−801

doi: 10.1242/jcs.00274
[27]

Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, et al. 2005. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiology 138:1982−93

doi: 10.1104/pp.105.062968
[28]

Nakamura M, Ehrhardt DW, Hashimoto T. 2010. Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nature Cell Biology 12:1064−70

doi: 10.1038/ncb2110
[29]

Chen C, Liu M, Jiang L, Liu X, Zhao J, et al. 2014. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). Journal of Experimental Botany 65:4943−58

doi: 10.1093/jxb/eru258
[30]

Liu X, Pan Y, Liu C, Ding Y, Wang X, et al. 2020. Cucumber fruit size and shape variations explored from the aspects of morphology, histology, and endogenous hormones. Plants 9:772

doi: 10.3390/plants9060772
[31]

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, et al. 2012. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology 30:174−78

doi: 10.1038/nbt.2095
[32]

Song M, Cheng F, Wang J, Wei Q, Fu W, et al. 2019. A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber (Cucumis sativus L.). Journal of Integrative Plant Biology 61:1000−14

doi: 10.1111/jipb.12739
[33]

Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature genetics 41:1275−81

doi: 10.1038/ng.475
[34]

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406−25

doi: 10.1093/oxfordjournals.molbev.a040454
[35]

Zhang Q, Lin F, Mao T, Nie J, Yan M, et al. 2012. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. The Plant Cell 24:4555−76

doi: 10.1105/tpc.112.104182
[36]

Jiao Y, Wang Y, Xue D, Wang J, Yan M, et al. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetic 42:541−44

doi: 10.1038/ng.591
[37]

Wang H, Sun J, Yang F, Weng Y, Chen P, et al. 2021. CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 134:2429−2441

doi: 10.1007/s00122-021-03833-y
[38]

Qu J, Ye J, Geng Y, Sun Y, Gao S, et al. 2012. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiology 160:738−48

doi: 10.1104/pp.112.198564
[39]

Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, et al. 2004. The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. The Plant Cell 16:2035−47

doi: 10.1105/tpc.104.023937
[40]

Krtková J, Benáková M, Schwarzerová K. 2016. Multifunctional microtubule-associated proteins in plants. Frontiers in Plant Science 7:474

doi: 10.3389/fpls.2016.00474