[1] |
Ding L, Chen Y, Wei X, Ni M, Zhang J, et al. 2017. Laboratory evaluation of transgenic Populus davidiana × Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm. Plos One 12:e0178754 doi: 10.1371/journal.pone.0178754 |
[2] |
Dong Y, Du S, Zhang J, Yang M, Wang J. 2015. Differential expression of dual Bt genes in transgene poplar Juba (Populus deltoides cv. 'Juba') transformed by two different transformation vectors. Canadian Journal of Forest Research 45:60−67 doi: 10.1139/cjfr-2014-0335 |
[3] |
Dong Y, Ren Y, Yang M, Zhang J, Qiu T, et al. 2017. Construction of a new type of multi-gene plant transformation vector and genetic transformation of tobacco. Biologia Plantarum 61:13−23 doi: 10.1007/s10535-016-0684-5 |
[4] |
Ren Y, Dong Y, Zhang J, Qiu T, Yang M. 2015. Genetic transformation and expression detection of tobacco by using a multi-gene plant transformation vector. Journal of Animal and Plant Sciences 25:13−21 |
[5] |
Zhao J, Liu Z, Peng Y, Qi F. 2013. Progress on technology for detection and evaluation of unintended effects of genetically modified plants. Journal of Agricultural Science and Technology 15:64−69 |
[6] |
Yang D, Deng P, Zhou X, Hou H, Yang Y. 2010. Unintended effects of genetically modified plant and evaluation. China Tropical Medicine 10:123−24+26 doi: 10.13604/j.cnki.46-1064/r.2010.01.001 |
[7] |
Wang G, Dong Y, Liu X, Yao G, Yu X, et al. 2018. The current status and development of insect-resistant genetically engineered poplar in China. Frontiers in Plant Science 9:1404 doi: 10.3389/fpls.2018.01408 |
[8] |
Rao H, Wr N, Huang M, Fan Y, Wang M. 2001. Two insect-resistant genes were transferred into poplar hybrid and transgenic poplar shew insect-resistance. Progress in Biotechnology 18:239−46 doi: 10.1016/S0921-0423(01)80078-2 |
[9] |
Yan L, Xia Y, Wang T, Liang H, Liu C, et al. 2007. Research progress of polygenic polymerization. Journal of Shandong Forestry Science and Technology 5:82−85 doi: 10.3969/j.issn.1002-2724.2007.05.036 |
[10] |
Tian C, Xie X, Li Y, Yin X, Han J, et al. 2017. Construction of the IRES-based vector for multiple gene co-expression. China Biotechnology 37:97−104 doi: 10.13523/j.cb.20170716 |
[11] |
Kim JH, Lee SR, Li L, Park HJ, Park JH, et al. 2017. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. Plos One 6:e18556 doi: 10.1371/journal.pone.0018556 |
[12] |
Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, et al. 2004. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Research 32:e19 doi: 10.1093/nar/gnh014 |
[13] |
Guo L, Xue D, Wang H, Chen S, Lu D, et al. 2006. Improvement of rice salt-tolerance by using an integrated method of gene transformation and traditional breeding. Chinese Journal of Rice Science 20:141−46 doi: 10.16819/j.1001-7216.2006.02.005 |
[14] |
Ma B, Wang L, Li P, Zhu Z, Zhou K. 2002. Pyramiding introduced exogenic genes in transgenic rice plants. Journal of Sichuan University (Natural Science Edition) 39(S1):50−54 |
[15] |
Wang H, Huang D, Lu R, Liu J, Qian Q, et al. 2000. Salt tolerance of transgenic rice (Oryza sativa L.) with mtlD gene and gutD gene. Chinese Science Bulletin 45:1685−90 |
[16] |
Fan J, Han Y, Li L, Peng X, Li J. 2002. Salt-resistant gene transformation to poplar 84K. Journal of Northwest Forestry University 17:33−37 doi: 10.3969/j.issn.1001-7461.2002.04.009 |
[17] |
Li Y, Zhang X, Xue Q. 2002. Obtaining a large number of Agrobacterium-transformed rice plants harboring two insecticidal genes. Journal of Agricultural Biotechnology 10:60−63 doi: 10.3969/j.issn.1674-7968.2002.01.015 |
[18] |
Wu Y, Wang P, Ji J, Zhang Y, Wang G. 2003. Screening transgenic plants by transferring insecticidal genes into Glycine max. Journal of Jilin Agricultural University 25:371–73+77 doi: 10.13327/j.jjlau.2003.04.005 |
[19] |
Guo D, Yang X, Bao S, Guo S, Kang L, et al. 2008. Synchronous expression of CryIA and CpTI genes in soybean and analysis of their resistance to insect pests. Scientia Agricultura Sinica 41:2957−62 doi: 10.3864/j.issn.0578-1752.2008.10.007 |
[20] |
Li M, Zhang H, Yu J, Zhou Z, Cang J, et al. 2010. Transferring Bt-CPTI two insect-insect genes into maize inbred lines by pollen tube pathway. Journal of Maize Sciences 18:29−33+41 doi: 10.13597/j.cnki.maize.science.2010.01.015 |
[21] |
Guo J, Zhu X, Guo W, Zhang T. 2007. Inheritance analysis and resistance of the transgenic cotton harboring Bt+Sck double genes to Helicoverpa armigera. Cotton Science 19:88−92 doi: 10.3969/j.issn.1002-7807.2007.02.002 |
[22] |
Lian Y, Jia Z, He K, Liu Y, Song F, et al. 2008. The artificially modified Cry1Ac and Cry1Ie genes were co expressed in tobacco and had better insecticidal activity against Helicoverpa armigera. Chinese Science Bulletin 53:658−63 doi: 10.1360/csb2008-53-6-658 |
[23] |
Cao J, Shelton AM, Earle ED. 2008. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard (Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Reports 27:479 doi: 10.1007/s00299-007-0473-x |
[24] |
Yang Z, Lang Z, Zhang J, Song F, He K, et al. 2012. Studies on insect-resistant transgenic maize (Zea mays L.) harboring Bt cry1Ah and cry1Ie genes. Journal of Agricultural Science and Technology 14:39−45 doi: 10.3969/j.issn.1008-0864.2012.04.06 |
[25] |
Wang J, Su X, Ji L, Zhang B, Hu Z, et al. 2006. Acquisition of polygenic Populus euramericana 'Guariento' transformed by gene gun. Chinese Science Bulletin 51:2755−60 doi: 10.1360/csb2006-51-23-2755 |
[26] |
Xiong H, Kang J, Yang Q, Sun Y, Tang K. 2008. A primary study on transferring plant expression vectors containing binary insect resistance genes Bt CryIA(a)-pta or Bt CryIA(c)-pta into alfalfa. Chinese Journal of Grassland 30:21−26 |
[27] |
Zhou J. 2020. Construction of insect-resistant and color-leaf gene stacking structure and its genetic transformation in Populus tomentosa. Thesis, Beijing Forestry University, Beijing. pp. 22–34 |
[28] |
Cornu D, Leplé JC, Bonadé-Bottino M, Ross A, Augustin S, et al. 1996. Expression of a proteinase inhibitor and a Bacillus thuringiensis δ-endotoxin in transgenic poplars. In Somatic Cell Genetics and Molecular Genetics of Trees, eds. Ahuja MR, Boerjan W, Neale DB. Netherlands: Springer, Dordrecht. pp. 131–36 https://doi.org/10.1007/978-94-011-3983-0_18 |
[29] |
Tian Y, Zheng J, Yu H, Liang H, Li C, et al. 2000. Studies of transgenic hybrid poplar 741 carrying two insect_resistant genes. Acta Botanica Sinica 42:263−68 doi: 10.3321/j.issn:1672-9072.2000.03.009 |
[30] |
Wang Y, Gao B, Zheng J, Liang H. 2003. Study on the transformation of Populus cathayana with the divalent insect- resistant genes. Journal of Agricultural University of Hebei 26:51−54 doi: 10.3969/j.issn.1000-1573.2003.02.014 |
[31] |
Yang M, Li Z, Wang Y, Wang J, Liang H. 2006. Transformation and expression of two insect-resistant genes to hybrid triploid of Chinese white poplar. Scientia Silvae Sinicae 42:61−68 doi: 10.3321/j.issn:1001-7488.2006.09.012 |
[32] |
Li K, Fan J, Zhao Z, Li L, Jia X. 2007. Resistance to insect of transgenic Populus tomentosa clone-85 plants with two insect-resistant genes. Acta Botanica Boreali-Occidentalia Sinica 27:1537−43 doi: 10.3321/j.issn:1000-4025.2007.08.006 |
[33] |
Yang Y, Liu X, Liu G, Zhou N, Fu X, et al. 2012. Study on two insect-resistant gene transformation of poplar 107. Northern Horticulture 7:120−22 |
[34] |
Zhang B, Su X, Li Y, Zhang Y, Qu L, et al. 2005. Transformation of poplar (Populus alba × P. glandulosa cv. '84K') with binary insect resistant genes and analysis of insect resistance. Forest Research 18:364−68 doi: 10.3321/j.issn:1001-1498.2005.03.027 |
[35] |
Jiang J, Chang Y, Dong J, Wang Z, Liu G. 2004. Study on two insecticidal transgenic genes in Populus simonii × P. nigar. Plant Physiology Communications 40:669−72 doi: 10.13592/j.cnki.ppj.2004.06.004 |
[36] |
Zuo L, Wang Z, Liang C, Xie S. 2009. Transformation of Populus davidiana × P. bollena with Bt+spider toxin gene. Journal of Northeast Forestry University 37:112−14 doi: 10.3969/j.issn.1000-5382.2009.07.038 |
[37] |
Zou C, Yu W, Wang Z. 2010. Resistance of transgenic Populus nigra × Populus deltoids '108' containing chimeric foreign genes of spider insecticidal and Bt against Lymantria dispar larvae. Journal of Northeast Forestry University 38:80−82 doi: 10.13759/j.cnki.dlxb.2010.05.030 |
[38] |
Song S. 2010. Study on insect-resistant gene transformation for Populus davidiana Dode. Thesis. Northeast Forestry University, Haerbin. pp. 16–35 |
[39] |
Wang G, Yang M, Huo X, Wang Y, Li S. 2012. Transformation of 741 poplar with double Bt genes and the insect resistance of the transgenic plant. Scientia Silvae Sinicae 48:42−49 doi: 10.11707/j.1001-7488.20120907 |
[40] |
Ren Y, Zhou X, Dong Y, Zhang J, Wang J, et al. 2021. Exogenous gene expression and insect resistance in dual Bt toxin Populus × euramericana 'Neva' transgenic plants. Frontiers in Plant Science 12:660226 doi: 10.3389/fpls.2021.660226 |
[41] |
Ren Y. 2013. Genetic transformation of tobacco and Populus × euramericana 'Neva' by multi-gene plant transformation vector. Thesis. Agricultural University of Hebei, Baoding. pp. 52–64 |
[42] |
Zhang X. 2013. Genetic transformation of the insect-resistant and salt-tolerant gene in tobacco and Populus × euramericana 'Neva' and the expression analysis. Thesis. Agricultural University of Hebei, Baoding. pp. 39–47 |
[43] |
Zhou X, Dong Y, Zhang Q, Xiao D, Yang M, et al. 2020. Expression of multiple exogenous insect resistance and salt tolerance genes in Populus nigra L. Frontiers in Plant Science 11:1123 doi: 10.3389/fpls.2020.01123 |
[44] |
Yang R, Wang A, Zhang J, Dong Y, Yang M, et al. 2016. Genetic transformation and expression of transgenic lines of Populus × euramericana with insect-resistance and salt-tolerance genes. Genetics and Molecular Research 15:gmr.15028635 doi: 10.4238/gmr.15028635 |
[45] |
Liu D, Zhang J, Dong Y, Zhang X, Yang M, et al. 2016. Genetic transformation and expression of Cry1Ac–Cry3A–NTHK1 genes in Populus × euramericana "Neva". Acta Physiologiae Plantarum 38:177 doi: 10.1007/s11738-016-2195-6 |
[46] |
Lu M, Hu J. 2011. A brief overview of field testing and commercial application of transgenic trees in China. BMC proceedings 5:O63 doi: 10.1186/1753-6561-5-s7-o63 |
[47] |
Wang G, Yang M, Huo X, Liu X. 2012. Comparison of exogenous gene expression and insect resistance ability of transgenic 741 poplars with single and double Bt genes. Acta Entomologica Sinica 55:798−803 doi: 10.16380/j.kcxb.2012.07.004 |
[48] |
Xu L, Dong Y, Zhang J, Wang R, Liu H, et al. 2016. Effect of dual Bt-expression transformation vectors on transgene expression in tobacco. Genetics and Molecular Research 15:gmr.15038293 doi: 10.4238/gmr.15038293 |
[49] |
Qiu T, Dong Y, Ren Y, Wang J, Yang M, et al. 2017. Effects of the sequence and orientation of an expression cassette in tobacco transformed by dual Bt genes. Plasmid 89:1−8 doi: 10.1016/j.plasmid.2016.11.003 |
[50] |
Li J, Zheng X, Deng P, Liu G. 2008. Heterogenic genes for commercialized genetically modified plants and their detection techniques. Journal of Agricultural Science and Technology 10:31−39 doi: 10.3969/j.issn.1008-0864.2008.03.006 |
[51] |
Movahedi A, Zhang J, Gao P, Yang Y, Wang L, et al. 2015. Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. Plant Cell, Tissue and Organ Culture 120:141−54 doi: 10.1007/s11240-014-0588-z |
[52] |
Henikoff S, Till BJ, Comai L. 2004. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiology 135:630−36 doi: 10.1104/pp.104.041061 |
[53] |
Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, et al. 2001. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nature Biotechnology 19:470−74 doi: 10.1038/88150 |
[54] |
Tang Z, Li L, Tian W. 2001. Agronomic traits in progeny of transgenic rice mediated by biolistic bombardment. Seientia Agrieultura Siniea 34:581−86 doi: 10.3321/j.issn:0578-1752.2001.06.001 |
[55] |
Yang L, Wang Z, Ke D, Wu J. 2010. Construction and transformation of over-expression vector and RNAi vector of AtGLB1. Journal of Huazhong Agricultural University 29:413−16 doi: 10.13300/j.cnki.hnlkxb.2010.04.001 |
[56] |
Dale PJ, McPartlan HC. 1992. Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theoretical and Applied Genetics 84:585−91 doi: 10.1007/BF00224156 |
[57] |
Jin W, Pan Q, Yin S, Dong J, Jiang L, et al. 2005. Progress of the genetic stability and breeding behavior of foreign gene in genetically modified plants. Molecular Plant Breeding 3:864−68 doi: 10.3969/j.issn.1672-416X.2005.06.019 |
[58] |
Deng L, Deng X, Wei S, Cao Z, Tang L, et al. 2014. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice. Hybrid Rice 29:67−71+75 doi: 10.16267/j.cnki.1005-3956.2014.01.022 |
[59] |
Zhou J, Ma C, Xu H, Yuan K, Lu X, et al. 2009. Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC-FID and GC–MS. Journal of Chromatography B 877:725−32 doi: 10.1016/j.jchromb.2009.01.040 |
[60] |
Huang Y, Zhen Z, Cui Z, Liu J, Wang S, et al. 2021. Growth and arthropod community characteristics of transgenic poplar 741 in an experimental forest. Industrial Crops and Products 162:113284 doi: 10.1016/j.indcrop.2021.113284 |
[61] |
Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R. 2003. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Molecular Biology 52:161−76 doi: 10.1023/A:1023929630687 |
[62] |
Labra M, Savini C, Bracale M, Pelucchi N, Colombo L, et al. 2001. Genomic changes in transgenic rice (Oryza sativa L.) plants produced by infecting calli with Agrobacterium tumefaciens. Plant Cell Reports 20:325−30 doi: 10.1007/s002990100329 |
[63] |
Noro Y, Takano-Shimizu T, Syono K, Kishima Y, Sano Y. 2007. Genetic variations in rice in vitro cultures at the EPSPs–RPS20 region. Theoretical and Applied Genetics 114:705−11 doi: 10.1007/s00122-006-0470-4 |
[64] |
Zeller SL, Kalinina O, Brunner S, Keller B, Schmid B. 2010. Transgene × environment interactions in genetically modified wheat. Plos One 5:e11405 doi: 10.1371/journal.pone.0011405 |
[65] |
Fu J, Liu B. 2020. Exogenous Cry1Ab/c protein recruits different endogenous proteins for its function in plant growth and development. Frontiers in Bioengineering and Biotechnology 8:685 doi: 10.3389/fbioe.2020.00685 |
[66] |
Conner AJ, Glare TR, Nap JP. 2003. The release of genetically modified crops into the environment: Part II. Overview of ecological risk assessment. The Plant Journal 33:19−46 doi: 10.1046/j.0960-7412.2002.001607.x |
[67] |
Wang J, Sun Y. 1999. Progress of plants genetic transformation by Agrobacterium. Biotechnology Information 1:9−13 doi: 10.3969/j.issn.1002-5464.1999.01.002 |
[68] |
He C. 2003. Application of modern biotechnology in Populus genetic improvement. Journal of Southwest Forestry College 23:61−67 doi: 10.3969/j.issn.2095-1914.2003.03.017 |
[69] |
Yang M, Mi D, Ewald D, Wang Y, Liang H, et al. 2006. The survival and escape of Agrobacterium tumefaciens in triploid hybrid lines of Chinese white poplar transformed with two insect-resistant genes. Acta Ecologicasinica 26:3555−61 doi: 10.1016/S1872-2032(06)60055-3 |
[70] |
Hou Y. 2008. Preliminary study on the ecological safety assessment of transgenic poplar. Thesis. Chinese Academy of Forestry, Beijing. pp. 45–59 https://doi.org/10.7666/d.D602714 |
[71] |
Zhu W, Ding C, Zhang W, Zhang B, Huang Q, et al. 2017. Exogenous gene transformation of 8-year-old multi-gene transgenic Populus × euramericana 'Guariento' and its influence on soil microbial quantity. Forest Research 30:349−53 doi: 10.13275/j.cnki.lykxyj.2017.02.023 |
[72] |
Li H, Liu Y, Kang Y, Wang Q. 2014. Influence of transgenic Populus simonii × P. nigra on soil microbial community. Journal of Nanjing Forestry University (Natural Sciences Edition) 38:75−80 doi: doi:10.3969/j.issn.1000-2006.2014.02.015 |
[73] |
Jasinski JR, Eisley JB, Young CE, Kovach J, Willson H. 2003. Select nontarget arthropod abundance in transgenic and nontransgenic field crops in ohio. Environmental Entomology 32:407−13 doi: 10.1603/0046-225x-32.2.407 |
[74] |
Bai Y, Yan R, Ye G, Huang F, Wangila DS, et al. 2012. Field response of aboveground non-target arthropod community to transgenic Bt-Cry1Ab rice plant residues in postharvest seasons. Transgenic Research 21:1023−32 doi: 10.1007/s11248-012-9590-6 |
[75] |
Ahmad A, Negri I, Oliveira W, Brown C, Asiimwe P, et al. 2016. Transportable data from non-target arthropod field studies for the environmental risk assessment of genetically modified maize expressing an insecticidal double-stranded RNA. Transgenic Research 25:1−17 doi: 10.1007/s11248-015-9907-3 |
[76] |
Dhurua S, Gujar GT. 2011. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Management Science 67:898−903 doi: 10.1002/ps.2127 |
[77] |
Wan P, Huang Y, Wu H, Huang M, Cong S, et al. 2012. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. Plos One 7:e29975 doi: 10.1371/journal.pone.0029975 |
[78] |
Fabrick JA, Ponnuraj J, Singh A, Tanwar RK, Unnithan GC, et al. 2014. Alternative splicing and highly variable cadherin transcripts associated with field-evolved resistance of pink bollworm to Bt cotton in India. Plos One 9:e97900 doi: 10.1371/journal.pone.0097900 |
[79] |
Jin L, Wang J, Guan F, Zhang J, Yu S, et al. 2018. Dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. PNAS 115:11760−65 doi: 10.1073/pnas.1812138115 |
[80] |
Pons X, Lumbierres B, López C, Albajes R. 2005. Abundance of non-target pests in transgenic Bt-maize: A farm scale study. European Journal of Entomology 102:73−79 doi: 10.14411/eje.2005.010 |
[81] |
Lu Y, Wu K, Jiang Y, Xia B, Li P, et al. 2010. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151−54 doi: 10.1126/science.1187881 |
[82] |
Zhang B, Chen M, Zhang X, Luan H, Diao S, et al. 2011. Laboratory and field evaluation of the transgenic Populus alba × Populus glandulosa expressing double coleopteran-resistance genes. Tree physiology 31:567−73 doi: 10.1093/treephys/tpr032 |
[83] |
Gao S, Gao B, Liu J, Guan H, Jiang W. 2006. Impacts of transgenic insect-resistance hybrid poplar 741 on the population dynamics of pests and natural enemies. Acta Ecologica Sinica 26:3491−98 doi: 10.3321/j.issn:1000-0933.2006.10.043 |
[84] |
Yao L, Gao BJ. 2016. Effect of arthropod community structure in transgenic hybrid poplar 741. Fujian Journal of Agricultural Science 31:480−86 doi: 10.3969/j.issn.1008-0384.2016.05.008 |
[85] |
Guo M, Jiang W, Li T, Wu L, Liu J. 2018. Arthropod community characteristics and relative stability in transgenic Populus × euramericana 'Neva' carrying bivalent insect-resistant genes. Acta Ecologica Sinica 38:333−41 doi: 10.5846/stxb201612202623 |
[86] |
Zhang Y, Guo T, Pan H, Huang M, Wang M, et al. 2012. Analysis on insecticidal activity of Bt transgenic Populus deltoides × P. euramericana cv 'Nanlin895' and its effects on soil microorganism. Forest Research 25:346−50 doi: 10.13275/j.cnki.lykxyj.2012.03.008 |
[87] |
Zhen Z, Wang J, Yang M. 2011. Effects of transgenic insect-resistance hybrid poplar 741 groves on soil microorganisms. Journal of Agricultural University of Hebei 34:78−81 |
[88] |
Li Y, Tang Y, Tang J, Wu M, Yang Y. 2015. Effect of transgenic Populus × euramericana 'Guariento' on the microorganism and the enzyme activity in the rhizosphere soil. Journal of Northeast Forestry University 43:55−58 doi: 10.13759/j.cnki.dlxb.20141224.008 |
[89] |
Lv X. 2017. The impact of transgenic poplar (ABJ Series) on soil microorganism group. Genomics and Applied Biology 36:1991−96 doi: 10.13417/j.gab.036.001991 |
[90] |
Zhu W, Zhang B, Huang Q, Chu Y, Ding C, et al. 2015. Effects of multi-gene transgenic Populus × euramericana 'Guariento' on the function of microbial population in the rhizosphere soil. Scientia Silvae Sinicae 51:69−75 |
[91] |
Hu J, Wang L, Yan D, Lu MZ. 2014. Research and Application of Transgenic Poplar in China. Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences. vol 81. Netherlands: Springer, Dordrecht. pp. 567–84 https://doi.org/10.1007/978-94-007-7076-8_24 |
[92] |
Gao B, Fang Z, Hou D, Wu B, Zhang SJ. 2003. Structure of arthropod community in stands of transgenic hybrid poplar 741. Journal of Beijing Forestry University 25:62−64 doi: 10.3321/j.issn:1000-1522.2003.01.014 |
[93] |
Andow DA, Zwahlen C. 2006. Assessing environmental risks of transgenic plants. Ecology Letters 9:196−214 doi: 10.1111/j.1461-0248.2005.00846.x |
[94] |
Zhang D, Lu Z, Liu J, Li C, Yang M, et al. 2015. Diversity of arthropod community in transgenic poplar-cotton ecosystems. Genetics and Molecular Research 14:15713−29 doi: 10.4238/2015.December.1.23 |
[95] |
Li W, Yue N, Xia H. 2000. The risk and management of transgenic organisms and their products. Biotechnology Bulletin 4:41−44 doi: 10.13560/j.cnki.biotech.bull.1985.2000.04.010 |