[1]

Lata R, Chowdhury S, Gond SK, White JF Jr. 2018. Induction of abiotic stress tolerance in plants by endophytic microbes. Letters in Applied Microbiology 66:268−76

doi: 10.1111/lam.12855
[2]

Bacon CW, White JF Jr. 2003. Evidence for nematode defense in symbiotic grasses. In Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts, eds. White JF Jr, Bacon CW, Hywel-Jones NL, Spataforma JW. New York: CRC Press. pp. 558–59 https://doi.org/10.1201/9780203912706.ch19

[3]

Wilson D. 1995. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274−76

doi: 10.2307/3545919
[4]

Coy RM, Held DW, Kloepper JW. 2019. Rhizobacterial colonization of bermudagrass by Bacillus spp. in a Marvyn loamy sand soil. Applied Soil Ecological Research 141:10−17

doi: 10.1016/j.apsoil.2019.04.018
[5]

White JF Jr. 1988. Endophyte-host associations in forage grasses. XI. A proposal concerning origin and evolution. Mycologia 80:442−46

doi: 10.2307/3807845
[6]

Strickland JR, Looper ML, Matthews JC, Rosenkrans CF, Flythe MD, et al. 2011. BOARD-INVITED REVIEW: St. Anthony's Fire in livestock: Causes, mechanisms, and potential solutions. Journal of Animal Science 89:1603−26

doi: 10.2527/jas.2010-3478
[7]

Hoveland CS. 1993. Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agriculture, Ecosystems & Environment 44:3−12

doi: 10.1016/0167-8809(93)90036-O
[8]

Johnson LJ, Koulman A, Christensen M, Lane GA, Fraser K, et al. 2013. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloë festucae with Lolium perenne. PLoS Pathogens 9:e1003332

doi: 10.1371/journal.ppat.1003332
[9]

Bacon CW, Porter JK, Robbins JD, Luttrell ES. 1977. Epichloë typhina from tall fescue grasses. Applied Environmental Microbiology 34:576−81

doi: 10.1128/aem.34.5.576-581.1977
[10]

Mote RS, Hill NS, Skarlupka JH, Turner ZB, Sanders ZP, et al. 2019. Response of beef cattle fecal microbiota to grazing on toxic tall fescue. Applied and Environmental Microbiology 85:e00032−19

doi: 10.1128/AEM.00032-19
[11]

Schardl CL. 2010. The Epichloae, Symbionts of the Grass Subfamily Poöideae. Annals of the Missouri Botanical Garden 97:646−65

doi: 10.3417/2009144
[12]

Moy M, Belanger F, Duncan R, Freehoff A, Leary C, et al. 2000. Identification of epiphyllous mycelial nets on leaves of grasses infected by clavicipitaceous endophytes. Symbiosis 28:291−302

[13]

Dugan FM, Sitton JW, Sullivan RF, White JF Jr. 2002. The Neotyphodium endophyte of wild barley (Hordeum brevisubulatum subsp. violaceum) grows and sporulates on leaf surfaces of the host. Symbiosis 32:147−59

[14]

Bush LP, Wilkinson HH, Schardl CL. 1997. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiology 114:1−7

doi: 10.1104/pp.114.1.1
[15]

Leuchtmann A, Bacon CW, Schardl CL, White JF Jr, Tadych M. 2014. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 106:202−15

doi: 10.3852/13-251
[16]

Tadych M, Bergen MS, White JF Jr. 2014. Epichloë spp. associated with grasses: new insights on life cycles, dissemination and evolution. Mycologia 106:181−201

doi: 10.3852/106.2.181
[17]

Saikkonen K, Gundel PE, Helander M. 2013. Chemical ecology mediated by fungal endophytes in grasses. Journal of Chemical Ecology 39:962−68

doi: 10.1007/s10886-013-0310-3
[18]

Pinski A, Betekhtin A, Hupert-Kocurek K, Mur LAJ, Hasterok R. 2019. Defining the genetic basis of plant–endophytic bacteria interactions. International Journal of Molecular Sciences 20:1947

doi: 10.3390/ijms20081947
[19]

Lakshmanan V, Selvaraj G, Bais HP. 2014. Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiology 166:689−700

doi: 10.1104/pp.114.245811
[20]

Buyer JS, Roberts DP, Russek-Cohen E. 1999. Microbial community structure and function in the spermosphere as affected by soil and seed type. Canadian Journal of Microbiology 45:138−44

doi: 10.1139/w98-227
[21]

Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183:92−99

doi: 10.1016/j.micres.2015.11.008
[22]

Guo J, McCulley RL, McNear DH Jr. 2015. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Frontiers in Plant Science 6:183

doi: 10.3389/fpls.2015.00183
[23]

Schardl C, Moon C. 2003. Processes of species evolution in Epichloë/Neotyphodium endophytes of grasses. In Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts, eds. White JF Jr, Bacon CW, Hywel-Jones NL, Spataforma JW. New York: CRC Press. pp. 255–89 https://doi.org/10.1201/9780203912706.ch9

[24]

Roberts E, Lindow S. 2014. Loline alkaloid production by fungal endophytes of Fescue species select for particular epiphytic bacterial microflora. The ISME Journal 8:359−68

doi: 10.1038/ismej.2013.170
[25]

Roberts EL, Ferraro A. 2015. Rhizosphere microbiome selection by Epichloë endophytes of Festuca arundinacea. Plant and Soil 396:229−39

doi: 10.1007/s11104-015-2585-3
[26]

Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP. 2015. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist 208:1227−40

doi: 10.1111/nph.13614
[27]

Adamczak A, Ożarowski M, Karpiński TM. 2019. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. Journal of Clinical Medicine 9:109

doi: 10.3390/jcm9010109
[28]

Cushnie TPT, Lamb AJ. 2005. Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents 26:343−56

doi: 10.1016/j.ijantimicag.2005.09.002
[29]

Pillai BVS, Swarup S. 2002. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Applied and Environmental Microbiology 68:143−51

doi: 10.1128/AEM.68.1.143-151.2002
[30]

Hurek T, Reinhold-Hurek B. 2003. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology 106:169−78

doi: 10.1016/j.jbiotec.2003.07.010
[31]

Nelson EB. 2018. The seed microbiome: Origins, interactions, and impacts. Plant and Soil 422:7−34

doi: 10.1007/s11104-017-3289-7
[32]

Padda KP, Puri A, Zeng Q, Chanway CP, Wu X. 2017. Effect of GFP-tagging on nitrogen fixation and plant growth promotion of an endophytic diazotrophic strain of Paenibacillus polymyxa. Botany 95:933−942

doi: 10.1139/cjb-2017-0056
[33]

Roberts EL, Mormile B, Adamchek CA. 2019. Fitness attributes of bacterial and fungal seed endophytes of Tall Fescue. In Seed Endophytes: Biology and Biotechnology, eds. Verma SK, White JF Jr. Switzerland: Springer Cham. pp. 259–71 https://doi.org/10.1007/978-3-030-10504-4_13

[34]

Afzal I, Shinwari ZK, Sikandar S, Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research 221:36−49

doi: 10.1016/j.micres.2019.02.001
[35]

Deng Y, Chen H, Li C, Xu J, Qi Q, et al. 2019. Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Communications Biology 2:368

doi: 10.1038/s42003-019-0614-0
[36]

Liu Z, Beskrovnaya P, Melnyk RA, Hossain SS, Khorasani S, et al. 2018. A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses. mBio 9:e00433−18

doi: 10.1128/mBio.00433-18
[37]

White JF Jr, Chen Q, Torres MS, Mattera R, Irizarry I, et al. 2015. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB PLANTS 7:plu093

doi: 10.1093/aobpla/plu093
[38]

Spiering MJ, Lane GA, Christensen MJ, Schmid J. 2005. Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 66:195−202

doi: 10.1016/j.phytochem.2004.11.021
[39]

Koulman A, Lane GA, Christensen MJ, Fraser K, Tapper BA. 2007. Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 68:355−60

doi: 10.1016/j.phytochem.2006.10.012
[40]

Johnson LJ, de Bonth ACM, Briggs LR, Caradus JR, Finch SC, et al. 2013. The exploitation of epichloae endophytes for agricultural benefit. Fungal Diversity 60:171−88

doi: 10.1007/s13225-013-0239-4
[41]

Koulman A, Lee TV, Fraser K, Johnson L, Arcus V, et al. 2012. Identification of extracellular siderophores and a related peptide from the endophytic fungus Epichloë festucae in culture and endophyte-infected Lolium perenne. Phytochemistry 75:128−39

doi: 10.1016/j.phytochem.2011.11.020
[42]

Hayat R, Ahmed I, Sheirdil RA. 2012. An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In Crop Production for Agricultural Improvement, eds. Ashraf M, Öztürk M, Ahmad MSA, Aksoy A. Netherlands: Springer, Dordrecht. pp. 557–79 https://doi.org/10.1007/978-94-007-4116-4_22

[43]

Monk J, Gerard E, Young S, Widdup K, O'Callaghan M. 2009. Isolation and identification of plant growth-promoting bacteria associated with tall fescue. Proceedings of the New Zealand Grassland Association 71:211−16

doi: 10.33584/jnzg.2009.71.2751
[44]

Brandl MT, Lindow SE. 1998. Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Applied and Environmental Microbiology 64:3256−63

doi: 10.1128/AEM.64.9.3256-3263.1998
[45]

Truyens S, Weyens N, Cuypers A, Vangronsveld J. 2015. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environmental Microbiology Reports 7:40−50

doi: 10.1111/1758-2229.12181
[46]

de los Santos MC, Taulé C, Mareque C, Beracochea M, Battistoni F. 2015. Identification and characterization of the part of the bacterial community associated with field-grown tall fescue (Festuca arundinacea) cv. SFRO Don Tomás in Uruguay. Annals of Microbiology 66:329−42

doi: 10.1007/s13213-015-1113-2
[47]

Park YG, Mun BG, Kang SM, Hussain A, Shahzad R, et al. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. Plos One 12:e0173203

doi: 10.1371/journal.pone.0173203
[48]

Ongena M, Jacques P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology 16:115−25

doi: 10.1016/j.tim.2007.12.009
[49]

Zhang D, Xu H, Gao J, Portieles R, Du L, et al. 2021. Endophytic Bacillus altitudinis strain uses different novelty molecular pathways to enhance plant growth. Frontiers in Microbiology 12:692313

doi: 10.3389/fmicb.2021.692313
[50]

López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, et al. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 20:207−17

doi: 10.1094/MPMI-20-2-0207
[51]

Ortíz-Castro R, Valencia-Cantero E, López-Bucio J. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling & Behavior 3:263−65

doi: 10.4161/psb.3.4.5204
[52]

Goswami M, Deka S. 2019. Biosurfactant production by a rhizosphere bacteria Bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids and Surfaces B: Biointerfaces 178:285−96

doi: 10.1016/j.colsurfb.2019.03.003
[53]

Rojas-Solis D, Vences-Guzmán MA, Sohlenkamp C, Santoyo G. 2020. Bacillus toyonensis COPE52 modifies lipid and fatty acid composition, exhibits antifungal activity, and stimulates growth of tomato plants under saline conditions. Current Microbiology 77:2735−44

doi: 10.1007/s00284-020-02069-1
[54]

Contreras-Pérez M, Hernández-Salmerón J, Rojas-Solís D, Rocha-Granados C, Orozco-Mosqueda Ma del C, et al. 2019. Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry (Vaccinium spp. var. Biloxi) growth-promoting bacterium. 3 Biotech 9:370

doi: 10.1007/s13205-019-1911-5
[55]

Wu T, Xu J, Liu J, Guo W, Li X, et al. 2019. Characterization and initial application of endophytic Bacillus safensis strain ZY16 for improving phytoremediation of oil-contaminated saline soils. Frontiers in Microbiology 10:991

doi: 10.3389/fmicb.2019.00991
[56]

Pal KK, Tilak KVBR, Saxcna AK, Dey R, Singh CS. 2001. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Microbiological Research 156:209−23

doi: 10.1078/0944-5013-00103
[57]

Patten CL, Jeong H, Blakney AJC, Wallace N. 2016. Draft genome sequence of a diazotrophic, plant growth–promoting rhizobacterium of the Pseudomonas syringae complex. Genome Announcements 4:4

doi: 10.1128/genomea.01023-16
[58]

Haas D, Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3:307−19

doi: 10.1038/nrmicro1129
[59]

Neiendam Nielsen M, Sørensen J. 1999. Chitinolytic activity of Pseudomonas fluorescens isolates from barley and sugar beet rhizosphere. FEMS Microbiology Ecology 30:217−27

doi: 10.1111/j.1574-6941.1999.tb00650.x
[60]

Lewis Roberts EL, Adamchek CA. 2017. Interactions between Fungal Endophytes and Bacterial Colonizers of Fescue Grass. In The Fungal Community: Its Organization and Role in the Ecosystem, eds. Dighton J, White JF Jr. Fourth Edition. Boca Roton: CRC Press. pp. 109−17. https://doi.org/10.1201/9781315119496

[61]

Meliani A, Bensoltane A, Benidire L, Oufdou K. 2017. Plant growth-promotion and IAA secretion with Pseudomonas fluorescens and Pseudomonas putida. Research and Reviews: Journal of Botanical Sciences 6:16−24

[62]

McClerklin SA, Lee SG, Harper CP, Nwumeh R, Jez JM, et al. 2018. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. Plos Pathogens 14:e1006811

doi: 10.1371/journal.ppat.1006811