[1]

Chauhan SS, LeMaster M, England EM. 2021. At physiological concentrations, AMP increases phosphofructokinase-1 activity compared to fructose 2, 6-bisphosphate in postmortem porcine skeletal muscle. Meat Science 172:108332

doi: 10.1016/j.meatsci.2020.108332
[2]

Wang Y, Liu R, Tian X, Fan X, Shi Y, et al. 2019. Comparison of activity, expression, and S-nitrosylation of calcium transfer proteins between pale, soft, and exudative and red, firm, and non-exudative pork during post-mortem aging. Journal of Agricultural and Food Chemistry 67:3242−48

doi: 10.1021/acs.jafc.8b06448
[3]

Stamler JS. 1994. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931−36

doi: 10.1016/0092-8674(94)90269-0
[4]

Stamler JS, Meissner G. 2001. Physiology of nitric oxide in skeletal muscle. Physiological Reviews 81:209−37

doi: 10.1152/physrev.2001.81.1.209
[5]

Zhang L, Liu R, Cheng Y, Xing L, Zhou G, et al. 2019. Effects of protein S-nitrosylation on the glycogen metabolism in postmortem pork. Food Chemistry 272:613−618

doi: 10.1016/j.foodchem.2018.08.103
[6]

Zhu Q, Xing L, Hou Q, Liu R, Zhang W. 2021. Proteomics identification of differential S-nitrosylated proteins between the beef with intermediate and high ultimate pH using isobaric iodoTMT switch assay. Meat Science 172:108321

doi: 10.1016/j.meatsci.2020.108321
[7]

Almeida A, Moncada S, Bolaños JP. 2004. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology 6:45−51

doi: 10.1038/ncb1080
[8]

Hou Q, Liu R, Tian X, Zhang W. 2020. Involvement of protein S-nitrosylation in regulating beef apoptosis during postmortem aging. Food Chemistry 326:126975

doi: 10.1016/j.foodchem.2020.126975
[9]

Lira V, Soltow Q, Long J, Betters J, Sellman J, et al. 2007. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism 293:E1062−E1068

doi: 10.1152/ajpendo.00045.2007
[10]

England EM, Matarneh SK, Scheffler TL, Wachet C, Gerrard DE. 2014. pH inactivation of phosphofructokinase arrests postmortem glycolysis. Meat Science 98:850−57

doi: 10.1016/j.meatsci.2014.07.019
[11]

Scopes RK. 1973. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis. Biochemical Journal 134:197−208

doi: 10.1042/bj1340197
[12]

Warner RD, Kauffman RG, & Greaser ML. 1997. Muscle protein changes post mortem in relation to pork quality traits. Meat Science 45:339−52

doi: 10.1016/S0309-1740(96)00116-7
[13]

Matarneh SK, England EM, Scheffler TL, Yen CN, et al. 2017. A mitochondrial protein increases glycolytic flux. Meat Science 133:119−25

doi: 10.1016/j.meatsci.2017.06.007
[14]

Liu R, Lonergan S, Steadham E, Zhou G, Zhang W, et al. 2019. Effect of nitric oxide and calpastatin on the inhibition of µ-calpain activity, autolysis and proteolysis of myofibrillar proteins. Food Chemistry 275:77−84

doi: 10.1016/j.foodchem.2018.09.104
[15]

Scheffler TL, Gerrard DE. 2007. Mechanisms controlling pork quality development: The biochemistry controlling postmortem energy metabolism. Meat Science 77:7−16

doi: 10.1016/j.meatsci.2007.04.024
[16]

Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A. 2008. Regulation of glycolysis and pentose–phosphate pathway by nitric oxide: Impact on neuronal survival. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1777:789−93

doi: 10.1016/j.bbabio.2008.04.011
[17]

Young ME, Radda GK, Leighton B. 1997. Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. Biochemical Journal 322:223−28

doi: 10.1042/bj3220223
[18]

Jin Z, Kho J, Dawson B, Jiang M, Chen Y, et al. 2021. Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation. The Journal of Clinical Investigation 131:e138935

doi: 10.1172/JCI138935
[19]

Scheffler TL, Matarneh SK, England EM, Gerrard DE. 2015. Mitochondria influence postmortem metabolism and pH in an in vitro model. Meat Science 110:118−25

doi: 10.1016/j.meatsci.2015.07.007
[20]

Cidad P, Almeida A, Bolaños J. 2004. Inhibition of mitochondrial respiration by nitric oxide rapidly stimulates cytoprotective GLUT3-mediated glucose uptake through 5'-AMP-activated protein kinase. Biochemical Journal 384:629−36

doi: 10.1042/BJ20040886
[21]

Merry TL, Steinberg GR, Lynch GS, McConell GK. 2009. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. American Journal of Physiology - Endocrinology and Metabolism 298:E577−E585

doi: 10.1152/ajpendo.00239.2009
[22]

Werner C, Natter R, Wicke M. 2010. Changes of the activities of glycolytic and oxidative enzymes before and after slaughter in the longissimus muscle of Pietrain and Duroc pigs and a Duroc-Pietrain crossbreed. Journal of Animal Science 88:4016−25

doi: 10.2527/jas.2010-3136
[23]

Wehling-Henricks M, Oltmann M, Rinaldi C, Myung KH, Tidball JG. 2009. Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Human Molecular Genetics 18:3439−51

doi: 10.1093/hmg/ddp288
[24]

Konorev EA, Kalyanaraman B, Hogg N. 2000. Modification of creatine kinase by S-nitrosothiols: S-nitrosation vs. S-thiolation. Free Radical Biology and Medicine 28:1671−78

doi: 10.1016/S0891-5849(00)00281-1
[25]

Yan J, Shi Q, Chen Z, Zhuang R, Chen H, et al. 2011. Skeletal muscle aldolase an overexpression in endotoxemic rats and inhibited by GSNO via potential role for S-nitrosylation in vitro. Journal of Surgical Research 170:E57−E63

doi: 10.1016/j.jss.2011.04.039
[26]

Zhou HL, Zhang R, Anand P, Stomberski CT, Qian Z, et al. 2019. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565:96−100

doi: 10.1038/s41586-018-0749-z
[27]

Zhang Z, Luo S, Zhang G, Feng L, Zheng C, et al. 2017. Nitric oxide induces monosaccharide accumulation through enzyme S-nitrosylation. Plant, Cell & Environment 40:1834−48

doi: 10.1111/pce.12989
[28]

Su D, Shukla AK, Chen B, Kim JS, Nakayasu E, et al. 2013. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry. Free Radical Biology and Medicine 57:68−78

doi: 10.1016/j.freeradbiomed.2012.12.010
[29]

Liu R, Fu Q, Lonergan S, Huff-Lonergan E, Xing L, et al. 2018. Identification of S-nitrosylated proteins in postmortem pork muscle using modified biotin switch method coupled with isobaric tags. Meat Science 145:431−39

doi: 10.1016/j.meatsci.2018.07.027
[30]

Mohr S, Stamler J, Brüne B. 1996. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. Journal of Biological Chemistry 271:4209−14

doi: 10.1074/jbc.271.8.4209
[31]

Sun J, Xin C, Eu JP, Stamler JS, Meissner G. 2001. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. PNAS 98:11158−62

doi: 10.1073/pnas.201289098
[32]

Viner RI, Williams TD, Schöneich C. 2000. Nitric oxide-dependent modification of the sarcoplasmic reticulum Ca-ATPase: localization of cysteine target sites. Free Radical Biology and Medicine 29:489−96

doi: 10.1016/S0891-5849(00)00325-7
[33]

Miller MR, Megson IL. 2007. Recent developments in nitric oxide donor drugs. British Journal of Pharmacology 151:305−21

doi: 10.1038/sj.bjp.0707224