[1] |
Chazdon RL. 2003. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics 6:51−71 doi: 10.1078/1433-8319-00042 |
[2] |
Gardner TA, Barlow J, Chazdon R, Ewers RM, Harvey CA, et al. 2009. Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters 12:561−82 doi: 10.1111/j.1461-0248.2009.01294.x |
[3] |
Koh LP, Miettinen J, Liew SC, Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. Proceedings of the National Academy of Sciences of the United States of America 108:5127−32 doi: 10.1073/pnas.1018776108 |
[4] |
Ziegler AD, Fox JM, Xu J. 2009. The Rubber Juggernaut. Science 324:1024−25 doi: 10.1126/science.1173833 |
[5] |
Yang J, Xu J, Zhai D. 2021. Integrating phenological and geographical information with artificial intelligence algorithm to map rubber plantations in Xishuangbanna. Remote Sensing 13:2793 doi: 10.3390/rs13142793 |
[6] |
Zhang J-Q, Corlett RT, Zhai D. 2019. After the rubber boom: good news and bad news for biodiversity in Xishuangbanna, Yunnan, China. Regional Environmental Change 19:1713−24 doi: 10.1007/s10113-019-01509-4 |
[7] |
Li H, Aide TM, Ma Y, Liu W, Cao M. 2007. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodiversity and Conservation 16:1731−45 doi: 10.1007/s10531-006-9052-7 |
[8] |
Min S, Wang X, Bai J, Waibel H. 2021. Married to rubber? Evidence from the expansion of natural rubber in Southwest China Forest Policy and Economics 129:102513 doi: 10.1016/j.forpol.2021.102513 |
[9] |
Jin S, Min S, Huang J, Waibel H. 2021. Rising labour costs and the future of rubber intercropping in China. International Journal of Agricultural Sustainability 20:124−39 doi: 10.1080/14735903.2021.1918482 |
[10] |
Xu J, Grumbine RE, Beckschäfer P. 2014. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecological Indicators 36:749−56 doi: 10.1016/j.ecolind.2012.08.023 |
[11] |
Fu Y, Chen J, Guo H, Hu H, Chen A, et al. 2010. Agrobiodiversity loss and livelihood vulnerability as a consequence of converting from subsistence farming systems to commercial plantation-dominated systems in Xishuangbanna, Yunnan, China: A household level analysis. Land Degradation & Development 21:274−84 doi: 10.1002/ldr.974 |
[12] |
Ashagrie Y, Zech W, Guggenberger G. 2005. Transformation of a Podocarpus falcatus dominated natural forest into a monoculture Eucalyptus globulus plantation at Munesa, Ethiopia: soil organic C, N and S dynamics in primary particle and aggregate-size fractions. Agriculture Ecosystems & Environment 106:89−98 doi: 10.1016/j.agee.2004.07.015 |
[13] |
Kanowski J, Catterall CP, Wardell-Johnson GW. 2005. Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. Forest Ecology and Management 208:359−72 doi: 10.1016/j.foreco.2005.01.018 |
[14] |
Basu S, Behera N. 1993. The effect of tropical forest conversion on soil microbial biomass. Biology and Fertility of Soils 16:302−4 doi: 10.1007/BF00369310 |
[15] |
Wang Q, Wang S. 2006. Microbial biomass in subtropical forest soils: effect of conversion of natural secondary broad-leaved forest to Cunninghamia lanceolata plantation. Journal of Forestry Research (Harbin) 17:197−200 doi: 10.1007/s11676-006-0046-9 |
[16] |
Kara Ö, Bolat İ. 2008. Soil microbial biomass C and N changes in relation to forest conversion in the Northwestern Turkey. Land Degradation & Development 19:421−28 doi: 10.1002/ldr.850 |
[17] |
Torsvik V, Øvreås L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5:240−45 doi: 10.1016/S1369-5274(02)00324-7 |
[18] |
Sparling GP, Pankhurst C, Doube BM, Gupta V. 1997. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In Biological indicators of soil health, eds. Pankhurst C, Doube B, Gupta V. pp. 97−119 |
[19] |
Anderson TH. 2003. Microbial eco-physiological indicators to asses soil quality. Agriculture Ecosystems & Environment 98:285−93 doi: 10.1016/S0167-8809(03)00088-4 |
[20] |
Goyal S, Chander K, Mundra MC, Kapoor KK. 1999. Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biology and Fertility of Soils 29:196−200 doi: 10.1007/s003740050544 |
[21] |
Waldrop MP, Balser TC, Firestone MK. 2000. Linking microbial community composition to function in a tropical soil. Soil Biology and Biochemistry 32:1837−46 doi: 10.1016/S0038-0717(00)00157-7 |
[22] |
Borken W, Muhs A, Beese F. 2002. Changes in microbial and soil properties following compost treatment of degraded temperate forest soils. Soil Biology and Biochemistry 34:403−12 doi: 10.1016/S0038-0717(01)00201-2 |
[23] |
Frey SD, Knorr M, Parrent JL, Simpson RT. 2004. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management 196:159−71 doi: 10.1016/j.foreco.2004.03.018 |
[24] |
Bowden RD, Davidson E, Savage K, Arabia C, Steudler P. 2004. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management 196:43−56 doi: 10.1016/j.foreco.2004.03.011 |
[25] |
Zinger L, Lejon DPH, Baptist F, Bouasria A, Aubert S, et al. 2011. Contrasting Diversity Patterns of Crenarchaeal, Bacterial and Fungal Soil Communities in an Alpine Landscape. Plos One 6:e19950 doi: 10.1371/journal.pone.0019950 |
[26] |
Helmann JD, Chamberlin MJ. 1988. Structure and function of bacterial sigma factors. Annual Review of Biochemistry 57:839−72 doi: 10.1146/annurev.bi.57.070188.004203 |
[27] |
Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354−64 doi: 10.1890/05-1839 |
[28] |
Lauber CL, Strickland MS, Bradford MA, Fierer N. 2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry 40:2407−15 doi: 10.1016/j.soilbio.2008.05.021 |
[29] |
Papatheodorou EM, Argyropoulou MD, Stamou GP. 2004. The effects of large- and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Applied Soil Ecology 25:37−49 doi: 10.1016/S0929-1393(03)00100-8 |
[30] |
Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews 59:143−69 doi: 10.1128/mr.59.1.143-169.1995 |
[31] |
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. Califonia: Academic Press. pp. 315−22 https://doi.org/10.1016/B978-0-12-372180-8.50042-1 |
[32] |
Nikolcheva LG, Bourque T, Bärlocher F. 2005. Fungal diversity during initial stages of leaf decomposition in a stream. Mycological Research 109:246−53 doi: 10.1017/S0953756204001698 |
[33] |
Raviraja NS, Nikolcheva LG, Bärlocher F. 2005. Diversity of conidia of aquatic hyphomycetes assessed by microscopy and by DGGE. Microbial Ecology 49:301−7 doi: 10.1007/s00248-004-0010-1 |
[34] |
Mielke PW Jr. 1984. Meteorological applications of permutation techniques based on distance functions. Handbook of Statistics 4:813−30 doi: 10.1016/S0169-7161(84)04036-0 |
[35] |
McCune B, Grace JB. 2002. Analysis of ecological communities. MJM Software Design, Gleneden Beach, OR. |
[36] |
Roberts BA, Fritschi FB, Horwath WR, Scow KM, Rains WD, et al. 2011. Comparisons of soil microbial communities influenced by soil texture, nitrogen fertility, and rotations. Soil Science 176:487−94 doi: 10.1097/SS.0b013e31822769d3 |
[37] |
Zhang M, Zou X, Schaefer DA. 2010. Alteration of soil labile organic carbon by invasive earthworms (Pontoscolex corethrurus) in tropical rubber plantations. European Journal of Soil Biology 46:74−79 doi: 10.1016/j.ejsobi.2009.11.004 |
[38] |
Curlevski NJA, Xu Z, Anderson IC, Cairney JWG. 2010. Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities. Soil Biology and Biochemistry 42:14−20 doi: 10.1016/j.soilbio.2009.08.001 |
[39] |
Lindahl BD, de Boer W, Finlay RD. 2010. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. The ISME Journal 4:872−81 doi: 10.1038/ismej.2010.19 |
[40] |
Chaudhuri PS, Nath S, Paliwal R. 2008. Earthworm population of rubber plantations (Hevea brasiliensis) in Tripura, India. Tropical Ecology 49:225−34 |
[41] |
Hutchinson SA, Kamel M. 1956. The effect of earthworms on earthworms on the dispersal of soil fungi. Journal of Soil Science 7:213−18 doi: 10.1111/j.1365-2389.1956.tb00877.x |
[42] |
Cha Z, Lin Z, Luo W, Li S, Luo X. 2005. Sustainable land management practices for rubber plantations in mountainous area of Hainan. Pedosphere 15:404−8 |
[43] |
Suzuki C, Nagaoka K, Shimada A, Takenaka M. 2009. Bacterial communities are more dependent on soil type than fertilizer type, but the reverse is true for fungal communities. Soil Science & Plant Nutrition 55:80−90 doi: 10.1111/j.1747-0765.2008.00344.x |