[1] |
Budke JM, Goffinet B, Jones CS. 2012. The cuticle on the gametophyte calyptra matures before the sporophyte cuticle in the moss Funaria hygrometrica (Funariaceae). American Journal of Botany 99:14−22 doi: 10.3732/ajb.1100311
|
[2] |
Leliaert F, Verbruggen H, Zechman FW. 2011. Into the deep: new discoveries at the base of the green plant phylogeny. BioEssays 33:683−92 doi: 10.1002/bies.201100035
|
[3] |
Samuels L, Kunst L, Jetter R. 2008. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59:683−707 doi: 10.1146/annurev.arplant.59.103006.093219
|
[4] |
Lara I, Belge B, Goulao LF. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology 87:103−12 doi: 10.1016/j.postharvbio.2013.08.012
|
[5] |
Koch K, Ensikat HJ. 2008. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39:759−72 doi: 10.1016/j.micron.2007.11.010
|
[6] |
Kunst L, Samuels AL. 2003. Biosynthesis and secretion of plant cuticular wax. Progress in Lipid Research 42:51−80 doi: 10.1016/S0163-7827(02)00045-0
|
[7] |
Riedel M, Eichner A, Meimberg H, Jetter R. 2007. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta 225:1517−34 doi: 10.1007/s00425-006-0437-3
|
[8] |
Chu W, Gao H, Chen H, Wu W, Fang X. 2018. Changes in cuticular wax composition of two blueberry cultivars during fruit ripening and postharvest cold storage. Journal of Agricultural and Food Chemistry 66:2870−76 doi: 10.1021/acs.jafc.7b05020
|
[9] |
Wang J, Hao H, Liu R, Ma Q, Xu J, et al. 2014. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chemistry 153:177−85 doi: 10.1016/j.foodchem.2013.12.021
|
[10] |
Wu X, Yin H, Chen Y, Li L, Wang Y, et al. 2017. Chemical composition, crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage. Postharvest Biology and Technology 132:71−80 doi: 10.1016/j.postharvbio.2017.05.007
|
[11] |
Wu X, Yin H, Shi Z, Chen Y, Qi K, et al. 2018. Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 pear (Pyrus spp.) cultivars. Frontiers in Plant Science 9:679 doi: 10.3389/fpls.2018.00679
|
[12] |
Chai Y, Li A, Chit Wai S, Song C, Zhao Y, et al. 2020. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chemistry 324:126903 doi: 10.1016/j.foodchem.2020.126903
|
[13] |
Bringe K, Schumacher CFA, Schmitz-Eiberger M, Steiner U, Oerke EC. 2006. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces. Phytochemistry 67:161−70 doi: 10.1016/j.phytochem.2005.10.018
|
[14] |
Belding RD, Blankenship SM, Young E, Leidy RB. 1998. Composition and variability of epicuticular waxes in apple cultivars. Journal of the American Society for Horticultural Science jashs 123:348−56 doi: 10.21273/JASHS.123.3.348
|
[15] |
Veraverbeke EA, Lammertyn J, Saevels S, Nicolaı̈ BM. 2001. Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage. Postharvest Biology and Technology 23:197−208 doi: 10.1016/S0925-5214(01)00128-4
|
[16] |
Gardingen PRV, Grace J, Jeffree CE. 1991. Abrasive damage by wind to the needle surfaces of Picea sitchensis (Bong.) Carr. and Pinus sylvestris L. Plant, Cell & Environment 14:185−93 doi: 10.1111/j.1365-3040.1991.tb01335.x
|
[17] |
Letchamo W, Gosselin A. 1996. Transpiration, essential oil glands, epicuticular wax and morphology of Thymus vulgaris are influenced by light intensity and water supply. Journal of Horticultural Science 71:123−34 doi: 10.1080/14620316.1996.11515388
|
[18] |
Lurie S, Fallik E, Klein JD. 1996. The effect of heat treatment on apple epicuticular wax and calcium uptake. Postharvest Biology and Technology 8:271−77 doi: 10.1016/0925-5214(96)00007-5
|
[19] |
Li F, Min D, Song B, Shao S, Zhang X. 2017. Ethylene effects on apple fruit cuticular wax composition and content during cold storage. Postharvest Biology and Technology 134:98−105 doi: 10.1016/j.postharvbio.2017.08.011
|
[20] |
Martin LBB, Rose JKC. 2014. There's more than one way to skin a fruit: formation and functions of fruit cuticles. Journal of Experimental Botany 65:4639−51 doi: 10.1093/jxb/eru301
|
[21] |
Yang Y, Zhou B, Zhang J, Wang C, Liu C, et al. 2017. Relationships between cuticular waxes and skin greasiness of apples during storage. Postharvest Biology and Technology 131:55−67 doi: 10.1016/j.postharvbio.2017.05.006
|
[22] |
Curry E. 2008. Effects of 1-MCP applied postharvest on epicuticular wax of apples (Malus domestica Borkh.) during storage. Journal of the Science of Food & Agriculture 88:996−1006 doi: 10.1002/jsfa.3180
|
[23] |
Fan X, Mattheis JP, Blankenship S. 1999. Development of apple superficial scald, soft scald, core flush, and greasiness is reduced by MCP. Journal of Agricultural and Food Chemistry 47:3063−68 doi: 10.1021/jf981176b
|
[24] |
Pietrysiak E, Ganjyal GM. 2018. Apple peel morphology and attachment of Listeria innocua through aqueous environment as shown by scanning electron microscopy. Food Control 92:362−69 doi: 10.1016/j.foodcont.2018.04.049
|
[25] |
Wang J, Sun L, Xie L, He Y, Luo T, et al. 2016. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. Plant Science 243:131−44 doi: 10.1016/j.plantsci.2015.12.010
|
[26] |
Chu W, Gao H, Chen H, Wu W, Fang X, et al. 2018. Effects of cuticular wax on the postharvest quality of blueberry fruit. Food Chemistry 239:68−74 doi: 10.1016/j.foodchem.2017.06.024
|
[27] |
Liu D, Zeng Q, Ji Q, Liu C, Liu S, et al. 2012. A comparison of the ultrastructure and composition of fruits cuticular wax from the wild-type 'Newhall' navel orange (Citrus sinensis [L.] Osbeck cv. Newhall) and its glossy mutant. Plant Cell Reports 31:2239−46 doi: 10.1007/s00299-012-1333-x
|
[28] |
Poirier BC, Buchanan DA, Rudell DR, Mattheis JP. 2018. Differential partitioning of triterpenes and triterpene esters in apple peel. Journal of Agricultural and Food Chemistry 66:1800−6 doi: 10.1021/acs.jafc.7b04509
|
[29] |
Yin Y, Bi Y, Chen S, Li Y, Wang Y, et al. 2011. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Scientia Horticulturae 129:577−82 doi: 10.1016/j.scienta.2011.04.028
|
[30] |
Bernard A, Domergue F, Pascal S, Jetter R, Renne C, et al. 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. The Plant Cell 24:3106−18 doi: 10.1105/tpc.112.099796
|
[31] |
Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, et al. 2015. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiology 167:682−92 doi: 10.1104/pp.114.253195
|
[32] |
Qi C, Zhao X, Jiang H, Zheng P, Liu H, et al. 2018. Isolation and functional identification of an apple MdCER1 gene. Plant Cell, Tissue and Organ Culture (PCTOC) 136:1−13 doi: 10.1007/s11240-018-1504-8
|
[33] |
Zhong M, Jiang H, Cao Y, Wang Y, You C, et al. 2020. MdCER2 conferred to wax accumulation and increased drought tolerance in plants. Plant Physiology and Biochemistry 149:277−85 doi: 10.1016/j.plaphy.2020.02.013
|
[34] |
Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, et al. 2006. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiology 142:866−77 doi: 10.1104/pp.106.086785
|
[35] |
Zheng H, Rowland O, Kunst L. 2005. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. The Plant Cell 17:1467−81 doi: 10.1105/tpc.104.030155
|
[36] |
Zhang C, Mao K, Zhou L, Wang G, Zhang Y, et al. 2018. Genome-wide identification and characterization of apple long-chain Acyl-CoA synthetases and expression analysis under different stresses. Plant Physiology and Biochemistry 132:320−32 doi: 10.1016/j.plaphy.2018.09.004
|
[37] |
Zhang C, Hu X, Zhang Y, Liu Y, Wang G, et al. 2020. An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. Tree Physiology 40:1450−65 doi: 10.1093/treephys/tpaa079
|
[38] |
Zhang C, Zhang Y, Hu X, Xiao X, Wang G, et al. 2020. An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. Plant Science 297:110529 doi: 10.1016/j.plantsci.2020.110529
|
[39] |
Lian X, Wang X, Gao H, Jiang H, Mao K, et al. 2020. Genome wide analysis and functional identification of MdKCS genes in apple. Plant Physiology and Biochemistry 151:299−312 doi: 10.1016/j.plaphy.2020.03.034
|
[40] |
Debono A, Yeats TH, Rose JKC, Bird D, Jetter R, et al. 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. The Plant Cell 21:1230−8 doi: 10.1105/tpc.108.064451
|
[41] |
Albert Z, Ivanics B, Molnár A, Miskó A, Tóth M, et al. 2013. Candidate genes of cuticle formation show characteristic expression in the fruit skin of apple. Plant Growth Regulation 70:71−78 doi: 10.1007/s10725-012-9779-y
|
[42] |
Broun P, Poindexter P, Osborne E, Jiang C, Riechmann JL. 2004. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. PNAS 101:4706−11 doi: 10.1073/pnas.0305574101
|
[43] |
Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, et al. 2019. Apple AP2/EREBP transcription factor MdSHINE2 confers drought resistance by regulating wax biosynthesis. Planta 249:1627−43 doi: 10.1007/s00425-019-03115-4
|
[44] |
Zhang Y, Zhang C, Wang G, Wang Y, Qi C, et al. 2019. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biology 19:362 doi: 10.1186/s12870-019-1918-4
|
[45] |
Yang Y, Zhou B, Wang C, Lv Y, Liu C, et al. 2017. Analysis of the inhibitory effect of 1-Methylcyclopropene on skin greasiness in postharvest apples by revealing the changes of wax constituents and gene expression. Postharvest Biology and Technology 134:87−97 doi: 10.1016/j.postharvbio.2017.08.013
|
[46] |
Chu W, Gao H, Cao S, Fang X, Chen H, et al. 2017. Composition and morphology of cuticular wax in blueberry (Vaccinium spp.) fruits. Food Chemistry 219:436−42 doi: 10.1016/j.foodchem.2016.09.186
|
[47] |
An JP, Qu FJ, Yao JF, Wang XN, You CX, et al. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research 4:17023 doi: 10.1038/hortres.2017.23
|