[1]

Cooper C. 1993. Biological effects of agriculturally derived surface water pollutants on aquatic systems—a review. Journal of environmental quality 22:402−8

doi: 10.2134/jeq1993.00472425002200030003x
[2]

Mee L. 2012. Between the Devil and the Deep Blue Sea: The coastal zone in an Era of globalisation. Estuarine, Coastal and Shelf Science 96:1−8

doi: 10.1016/j.ecss.2010.02.013
[3]

Kanu I, Achi OK. 2011. Industrial Effluents and Their Impact on Water Quality of Receiving Rivers In Nigeria. Journal of Applied Technology in Environmental Sanitation 1:75−86

[4]

Schmidt E, Dorosh PA, Kedir Jemal M, Smart J. 2018. Ethiopia's spatial and structural transformation: Public policy and drivers of change. Vol. 119, Ethiopian Development Research Institute

[5]

Butnariu M, Butu A. 2014. Chemical composition of vegetables and their products. In Handbook of Food Chemistry, eds. Cheung PCK, Mehta BM. Heidelberg: Springer, Berlin, Heidelberg. pp. 627−92 https://doi.org/10.1007/978-3-642-41609-5_17-1

[6]

Naik SR, Thakare VN, Joshi FP. 2010. Functional foods and herbs as potential immunoadjuvants and medicines in maintaining healthy immune system: A commentary. Journal of Complementary and Integrative Medicine 7

doi: 10.2202/1553-3840.1441
[7]

Radwan MA, Salama AK. 2006. Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food and chemical toxicology 44(8):1273−78

doi: 10.1016/j.fct.2006.02.004
[8]

Khanna P. 2011. Assessment of heavy metal contamination in different vegetables grown in and around urban areas. Research Journal of Environmental Toxicology 5:162−79

doi: 10.3923/rjet.2011.162.179
[9]

Garbisu C, Alkorta I. 2003. Basic concepts on heavy metal soil bioremediation. European Journal of Mineral Processing and Environmental Protection 3:58−66

[10]

He Z, Shentu J, Yang X, Baligar VC, Zhang T, et al. 2015. Heavy metal contamination of soils: sources, indicators and assessment. Journal of Environmental Indicators 9:17−18

[11]

Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, et al. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering 2011:939161

doi: 10.1155/2011/939161
[12]

Kalaivanan D, Ganeshamurthy AN. 2016. Mechanisms of heavy metal toxicity in plants. In Abiotic stress physiology of horticultural crops, eds. Srinivasa Rao NK, Shivashankara KS, Laxman RH. New Delhi: Springer, New Delhi. p. 85−102 https://doi.org/10.1007/978-81-322-2725-0_5

[13]

Rahman Z, Singh VP. 2019. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment 191:419

doi: 10.1007/s10661-019-7528-7
[14]

Tapiero H, Townsend DM, Tew KD. 2003. Trace elements in human physiology and pathology. Copper. Biomedicine & Pharmacotherapy 57:386−98

doi: 10.1016/S0753-3322(03)00012-X
[15]

Jeričević A, I. Ilyin, S. Vidič. 2012. Modelling of heavy metals: study of impacts due to climate change, in National security and human health implications of climate change, eds. Fernando HJS, Klaić Z, McCulley JM. Netherlands: Springer, Dordrecht. pp. 175−89 https://doi.org/10.1007/978-94-007-2430-3_15

[16]

Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry 2019:6730305

doi: 10.1155/2019/6730305
[17]

Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, et al. 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environmental Monitoring and Assessment 188:206

doi: 10.1007/s10661-016-5211-9
[18]

Ilker R, Szczesniak AS. 1990. Structural and chemical bases for texture of plant foodstuffs. Journal of Texture Studies 21:1−36

doi: 10.1111/j.1745-4603.1990.tb00462.x
[19]

Gadd GM. 2007. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research 111:3−49

doi: 10.1016/j.mycres.2006.12.001
[20]

Sodango TH, Li X, Sha J, Bao Z. 2018. Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. Journal of Health and Pollution 8(7):53−70

doi: 10.5696/2156-9614-8.17.53
[21]

Devi P, Kumar P. 2020. Concept and application of phytoremediation in the fight of heavy metal toxicity. Journal of Pharmaceutical Sciences and Research 12:795−804

[22]

Duan Q, Lee J, Liu Y, Chen H, Hu H. 2016. Distribution of heavy metal pollution in surface soil samples in China: a graphical review. Bulletin of Environmental Contamination and Toxicology 97:303−9

doi: 10.1007/s00128-016-1857-9
[23]

Olaniran AO, Balgobind A, Pillay B. 2013. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. International Journal of Molecular Sciences 14:10197−228

doi: 10.3390/ijms140510197
[24]

Yeshiwas Y, Tadele E, Tiruneh W. 2019. The dynamics of medicinal plants utilization practice nexus its health and economic role in Ethiopia: A review paper. International Journal of Biodiversity and Conservation 11:31−47

doi: 10.5897/IJBC2018.1201
[25]

Jørgensen N, Laursen J, Viksna A, Pind N, Holm PE. 2005. Multi-elemental EDXRF mapping of polluted soil from former horticultural land. Environment International 31:43−52

doi: 10.1016/j.envint.2004.06.007
[26]

Sharma RK, Agrawal M, Marshall F. 2006. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bulletin of Environmental Contamination and Toxicology 77:312−18

doi: 10.1007/s00128-006-1065-0
[27]

Förstner U. 1981. Metal Pollution Assessment from Sediment Analysis. In Metal pollution in the aquatic environment. Heidelberg: Springer, Berlin, Heidelberg. pp. 110−96 https://doi.org/10.1007/978-3-642-69385-4_4

[28]

Wuana RA, Okieimen FE. 2011. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices 2011:402647

doi: 10.5402/2011/402647
[29]

Abioye OP. 2011. Biological remediation of hydrocarbon and heavy metals contaminated soil. In Soil Contamination, ed. Pascucci S. London: IntechOpen. pp. 127−42 https://doi.org/10.5772/24938

[30]

Donkor A, Fordjour LA, Tawiah R, Asomaning W, Dubey B, et al. 2017. Evaluation of trace metals in vegetables sampled from farm and market sites of Accra Metropolis, Ghana. International Journal of Environmental Studies 74:315−24

doi: 10.1080/00207233.2016.1261599
[31]

Raschid-Sally L, Jayakody P. 2009. Drivers and characteristics of wastewater agriculture in developing countries: Results from a global assessment. Research Report. Rep. 127. International Water Management Institute, Colombo, Sri Lanka.

[32]

Kabata-Pendias A. 2004. Soil-plant transfer of trace elements — an environmental issue. Geoderma 122:143−49

doi: 10.1016/j.geoderma.2004.01.004
[33]

Kader AA, Rolle RS. 2004. The role of post-harvest management in assuring the quality and safety of horticultural produce. Vol. 152. Rome: Food and Agriculture Organization of the United Nations, ©2004.

[34]

Gupta N, Khan DK, Santra S. 2012. Heavy metal accumulation in vegetables grown in a long-term wastewater-irrigated agricultural land of tropical India. Environmental Monitoring and Assessment 184:6673−82

doi: 10.1007/s10661-011-2450-7
[35]

Rattan RK, Datta SP, Chhonkar PK, Suribabu K, Singh AK. 2005. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater — a case study. Agriculture, Ecosystems & Environment 109:310−22

doi: 10.1016/j.agee.2005.02.025
[36]

Clarkson D.T. 1984. Calcium transport between tissues and its distribution in the plant. Plant, Cell & Environment 7:449−56

doi: 10.1111/j.1365-3040.1984.tb01435.x
[37]

Gonçalves AC Jr, Schwantes D, Braga de Sousa RF, Benetoli da Silva TR, Guimarães VF, et al. 2020. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb. Journal of Environmental Management 262:110342

doi: 10.1016/j.jenvman.2020.110342
[38]

Latif A, Bilal M, Asghar W, Azeem M, Ahmad MI, et al. 2018. Heavy metal accumulation in vegetables and assessment of their potential health risk. Journal of Environmental Analytical Chemistry 5:2380−91

doi: 10.4172/2380-2391.1000234
[39]

Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of experimental botany 53:1−11

[40]

Itanna F. 2002. Metals in leafy vegetables grown in Addis Ababa and toxicological implications. Ethiopian Journal of Health Development 16:295−302

doi: 10.4314/ejhd.v16i3.9797
[41]

Woldetsadik D, Drechsel P, Keraita B, Itanna F, Gebrekidan H. 2017. Heavy metal accumulation and health risk assessment in wastewater-irrigated urban vegetable farming sites of Addis Ababa, Ethiopia. International Journal of Food Contamination 4:1−13

doi: 10.1186/s40550-017-0053-y
[42]

Oyinloye I. 2016. Bioremediation of Heavy Metals Contaminated Soil from A Steel Rolling Company in Ibadan. Doctoral dissertation. University of Ibadan Nigeria. 188 pp. http://ir.library.ui.edu.ng/handle/123456789/812

[43]

Sharma RK, Agrawal M, Marshall FM. 2008. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environmental Pollution 154:254−63

doi: 10.1016/j.envpol.2007.10.010
[44]

Bhatia A, Singh S, Kumar A. 2015. Heavy metal contamination of soil, irrigation water and vegetables in peri-urban agricultural areas and markets of Delhi. Water Environment Research 87:2027−34

doi: 10.2175/106143015X14362865226833
[45]

Kamiab F, Zamanibahramabadi E. 2016. The effect of foliar application of nano-chelate super plus ZFM on fruit set and some quantitative and qualitative traits of almond commercial cultivars. Journal of Nuts 7:9−20

doi: 10.22034/JON.2016.522950
[46]

Chen Y, Wang J, Shi G, Sun X, Chen Z, et al. 2011. Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai. Environmental Geochemistry and Health 33:515−23

doi: 10.1007/s10653-010-9368-9
[47]

Al Jassir MS, Shaker A, Khaliq MA. 2005. Deposition of heavy metals on green leafy vegerables sold on roadsides of Riyadh City, Saudi Arabia. Bulletin of Environmental Contamination and Toxicology 75:1020−27

doi: 10.1007/s00128-005-0851-4
[48]

Sharma RK, Agrawal M, Marshall FM. 2009. Heavy metals in vegetables collected from production and market sites of a tropical urban area of India. Food and Chemical Toxicology 47:583−91

doi: 10.1016/j.fct.2008.12.016
[49]

Girma G. 2015. Microbial bioremediation of some heavy metals in soils: an updated review. Egyptian Academic Journal of Biological Sciences, G. Microbiology 7:29−45

doi: 10.21608/eajbsg.2015.16483
[50]

Mishra AK, Singh J, Mishra PP. 2020. Toxic metals in crops: a burgeoning problem. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants, eds. Mishra K, Tandon PK, Srivastava S. Singapore: Springer. pp. 273−301 https://doi.org/10.1007/978-981-15-8636-1_11

[51]

Du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196:3−14

doi: 10.1016/j.scienta.2015.09.021
[52]

Aguilera JM. 2012. Edible structures: The basic science of what we eat. Boca Raton: CRC Press. 462 pp https://doi.org/10.1201/b13025

[53]

Chutia P, Kato S, Kojima T, Satokawa S. 2009. Arsenic adsorption from aqueous solution on synthetic zeolites. Journal of Hazardous Materials 162:440−47

doi: 10.1016/j.jhazmat.2008.05.061
[54]

Andrianisa HA, Ito A, Sasaki A, Aizawa J, Umita T. 2008. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride. Water Research 42:4809−17

doi: 10.1016/j.watres.2008.08.027
[55]

Raikwar MK, Kumar P, Singh M, Singh A. 2008. Toxic effect of heavy metals in livestock health. Veterinary World 1:28−30

doi: 10.5455/vetworld.2008.28-30
[56]

Kolthoff I, J. Coetzee. 1957. Polarography in Acetonitrile. 1 I. Metal Ions which Have comparable polarographic properties in acetonitrile and in water. Journal of the American Chemical Society 79(4):870−874

doi: 10.1021/ja01561a023
[57]

Duce RA, Liss PS, Merrill JT, Atlas EL, Buat-Menard P, et al. 1991. The atmospheric input of trace species to the world ocean. Global Biogeochemical Cycles 5:193−259

doi: 10.1029/91GB01778
[58]

Mahurpawar M. 2015. Effects of heavy metals on human health. International Journal of Research-Granthaalayah 3:1−7

doi: 10.29121/granthaalayah.v3.i9se.2015.3282
[59]

Pehlivan E, Özkan AM, Dinç S, Parlayici Ş. 2009. Adsorption of Cu2+ and Pb2+ ion on dolomite powder. Journal of Hazardous Materials 167:1044−49

doi: 10.1016/j.jhazmat.2009.01.096
[60]

Baruah S, Dutta J. 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters 7:191−204

doi: 10.1007/s10311-009-0228-8
[61]

Knap A, Dewailly É, Furgal C, Galvin J, Baden D, et al. 2002. Indicators of ocean health and human health: developing a research and monitoring framework. Environmental Health Perspectives 110:839−45

doi: 10.1289/ehp.02110839
[62]

Yi Y, Yang Z, Zhang Z. 2011. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution 159:2575−85

doi: 10.1016/j.envpol.2011.06.011
[63]

Robinson JB, Tuovinen OH. 1984. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Microbiological reviews 48:95−124

doi: 10.1128/mr.48.2.95-124.1984
[64]

Patra M, Bhowmik N, Bandopadhyay B, Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany 52:199−223

doi: 10.1016/j.envexpbot.2004.02.009
[65]

Akinsola R, Mohammed M, Malami D. 2014. Study of Atmospheric Pollution Levels by Trace Lead (element) Analysis of Tree Barks and Soils. International Journal of Modern Analytical and Separation Sciences 3:40−50

doi: 10.13140/RG.2.2.35614.05444
[66]

Cabaniss AD ed. 2008. Handbook on household hazardous waste: Rowman & Littlefield. Lanham, Maryland, US: Government Institutes, The Scarecrow Press, Inc.

[67]

Podust VN, Balan S, Sim BC, Coyle MP, Ernst U, et al. 2016. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. Journal of Controlled Release 240:52−66

doi: 10.1016/j.jconrel.2015.10.038
[68]

Volesky B. 1990. Removal and recovery of heavy metals by biosorption. In Biosorption of heavy metals. Boca Raton, FL: CRC Press. pp. 7−43

[69]

Aboh NA. 2018. Pattern of Thyroid Autoantibodies, Essential and Toxic Trace Elements in Various Thyroid Disorders in Nigeria. Doctoral dissertation. University of Ibadan, Nigeria. http://ir.library.ui.edu.ng/handle/123456789/126.

[70]

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology 7:60−72

doi: 10.2478/intox-2014-0009
[71]

Benedetti JL, Turcotte F, Lefebvre M, Therrien F, Weber JP. 1992. Blood and urinary cadmium levels in Inuit living in Kuujjuaq, Canada. Science of the Total Environment 127:167−72

doi: 10.1016/0048-9697(92)90475-8
[72]

Lorena J, Barlič-Maganja D, Lojkić M, Madić J, Grom J, et al. 2001. Classical swine fever virus (C strain) distribution in organ samples of inoculated piglets. Veterinary Microbiology 81:1−8

doi: 10.1016/S0378-1135(01)00321-2
[73]

Nasreddine L, Parent-Massin D. 2002. Food contamination by metals and pesticides in the European Union. Should we worry? Toxicology letters 127:29−41

doi: 10.1016/S0378-4274(01)00480-5
[74]

Onakpa MM, Njan AA, Kalu OC. 2018. A review of heavy metal contamination of food crops in Nigeria. Annals of Global Health 84:488−94

doi: 10.29024/aogh.2314
[75]

Wondimu A. 2015. Addis Ababa Institute of Technology (AAiT) School of Chemical and Bio-Engineering. Doctoral dissertation. Addis Ababa University Addis Ababa. Process Parameters Optimization and Development of Extruded Teff Based Snacks. file:///C:/Users/user/Downloads/AsnakechWondimu.pdf.

[76]

Joint F.A.O, World Health Organization. 1997. Food consumption and exposure assessment of chemicals. FAO/WHO Consulation on Food Consumption and Exposure Assessment of Chemicals, Geneva, 10−14 February 1997

[77]

Qadir M, Sharma BR, Bruggeman A, Choukr-Allah R, Karajeh F. 2007. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agricultural water management 87:2−22

doi: 10.1016/j.agwat.2006.03.018
[78]

Agrawal J, Sherameti I, Varma A. 2011. Detoxification of heavy metals: State of art. In Detoxification of Heavy Metals, Soil Biology, eds. Sherameti I, Varma A. vol 30. Heidelberg: Springer, Berlin, Heidelberg. pp. 1−34 https://doi.org/10.1007/978-3-642-21408-0_1

[79]

Loganathan P, Vigneswaran S, Kandasamy J, Naidu R. 2012. Cadmium sorption and desorption in soils: a review. Critical Reviews in Environmental Science and Technology 42:489−533

doi: 10.1080/10643389.2010.520234
[80]

Gerber GB, Léonard A, Hantson P. 2002. Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Critical reviews in Oncology/Hematology 42:25−34

doi: 10.1016/S1040-8428(01)00178-0
[81]

Ross EJ, Graham DL, Money KM, Stanwood GD. 2015. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology 40:61−87

doi: 10.1038/npp.2014.147
[82]

Zhang J, Mauzerall DL, Zhu T, Liang S, Ezzati M, et al. 2010. Environmental health in China: progress towards clean air and safe water. The Lancet 375:1110−19

doi: 10.1016/S0140-6736(10)60062-1
[83]

Nazif W, Perveen S, Shah SA. 2006. Evaluation of irrigation water for heavy metals of Akbarpura area. American Journal of Agricultural and Biological science 1:51−54

[84]

Pais I, Jones JB Jr. 1997. The Handbook of Trace Elements. Boca Raton: St. Lucie Press, 223 pp

[85]

Izah SC, Inyang IR, Angaye TCN, Okowa IP. 2016. A review of heavy metal concentration and potential health implications of beverages consumed in Nigeria. Toxics 5:1

doi: 10.3390/toxics5010001
[86]

Li X, Liu L, Wang Y, Luo G, Chen X, et al. 2013. Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 192:50−58

doi: 10.1016/j.geoderma.2012.08.011
[87]

Hamba Y, Tamiru M. 2016. Mycoremediation of heavy metals and hydrocarbons contaminated environment. Asian Journal of Natural & Applied Sciences 5:48−58

[88]

Roba C, Roşu C, Piştea I, Ozunu A, Baciu C. 2016. Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environmental Science and Pollution Research 23:6062−73

doi: 10.1007/s11356-015-4799-6
[89]

Bagdatlioglu N, Nergiz C, Ergonul PG. 2010. Heavy metal levels in leafy vegetables and some selected fruits. Journal für Verbraucherschutz und Lebensmittelsicherheit 5:421−28

doi: 10.1007/s00003-010-0594-y
[90]

Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, et al. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology 13:468−74

doi: 10.1038/nbt0595-468
[91]

Srinivas N, Krause A, Kakade SM, Seeger M. 2009. Gaussian process optimization in the bandit setting: No regret and experimental design. arXiv Preprint arXiv:0912.3995

[92]

Farooq S, Hashmi I, Qazi IA, Qaiser S, Rasheed S. 2008. Monitoring of Coliforms and chlorine residual in water distribution network of Rawalpindi, Pakistan. Environmental Monitoring and Assessment 140:339−47

doi: 10.1007/s10661-007-9872-2
[93]

Farooq M, Anwar F, Rashid U. 2008. Appraisal of heavy metal contents in different vegetables grown in the vicinity of an industrial area. Pakistan Journal of Botany 40:2099−106

[94]

Chove BE, Ballegu WR, Chove LM. 2006. Copper and Lead levels in two popular leafy vegetables grown around Morogoro Municipality, Tanzania. Tanzania Journal of Health Research 8:37−40

doi: 10.4314/thrb.v8i1.14269
[95]

Onianwa PC, Adeyemo AO, Idowu OE, Ogabiela EE. 2001. Copper and zinc contents of Nigerian foods and estimates of the adult dietary intakes. Food Chemistry 72:89−95

doi: 10.1016/S0308-8146(00)00214-4
[96]

Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science 145:83−96

doi: 10.1016/j.cis.2008.09.002
[97]

Aschale M, Sileshi Y, Kelly-Quinn M, Hailu D. 2015. Assessment of potentially toxic elements in vegetables grown along Akaki River in Addis Ababa and potential health implications. Food Science and Quality Management 40:42−52

[98]

Hailu A. 2007. Metal concentration in vegetables grown in Northern Addis Ababa and part of rift valley (Ziway), Ethiopia. Doctoral dissertation. Addis Ababa University, Ethiopia. http://thesisbank.jhia.ac.ke/id/eprint/4714

[99]

Gindaba J, Olsson M, Itanna F. 2004. Nutrient composition and short-term release from Croton macrostachyus Del. and Millettia ferruginea (Hochst.) Baker leaves. Biology and Fertility of Soils 40:393−397

doi: 10.1007/s00374-004-0767-x
[100]

Alemayehu T, Ayenew T, Kebede S. 2006. Hydrogeochemical and lake level changes in the Ethiopian Rift. Journal of Hydrology 316:290−300

doi: 10.1016/j.jhydrol.2005.04.024
[101]

Tegegn F. 2012. Physico-chemical pollution pattern along Akaki River basin, Addis Ababa, Ethiopia. www.diva-portal.org/smash/get/diva2:555414/fulltext02

[102]

Benti G. 2014. Assessment of heavy metals in vegetables irrigated with Awashi River in selected farms around Adama town, Ethiopia. African journal of Environmental Science and Technology 8:428−34

doi: 10.5897/AJEST2014.1732
[103]

Keefer RF, Singh RN, Horvath DJ. 1986. Chemical composition of vegetables grown on an agricultural soil amended with sewage sludges. Journal of Environmental Quality 15:146−52

doi: 10.2134/jeq1986.00472425001500020012x
[104]

Asfaw A, Sime M, Itanna F. 2013. Determining the extent of contamination of vegetables affected by tannery effluent in Ejersa area of East Shoa, Ethiopia. International Journal of Scientific and Research Publications 3:1−7

[105]

Bahiru DB. 2021. Assessment of some heavy metals contamination in some vegetables (tomato, cabbage, lettuce and onion) in Ethiopia: A review. American Journal of Environmental Protection 10:53−58

doi: 10.11648/j.ajep.20211002.12
[106]

Harrison RM, Chirgawi MB. 1989. The assessment of air and soil as contributors of some trace metals to vegetable plants I. Use of a filtered air growth cabinet. Science of the Total Environment 83:13−34

doi: 10.1016/0048-9697(89)90003-X
[107]

Goyer RA. 1996. Results of lead research: prenatal exposure and neurological consequences. Environmental Health Perspectives 104:1050−54

doi: 10.1289/ehp.961041050
[108]

Tamiru SM. 2018. Assessment of the impact of anthropogenic activities on water quality, biodiversity and livelihood in Lake Tana, Northwestern Ethiopia. Doctoral dissertation. University of South Africa. https://uir.unisa.ac.za/bitstream/handle/10500/25240/thesis_tamiru_sm.pdf?sequence=1

[109]

Weldegebriel Y, Chandravanshi BS, Wondimu T. 2012. Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotoxicology and Environmental Safety 77:57−63

doi: 10.1016/j.ecoenv.2011.10.011
[110]

Prabu PC. 2009. Impact of heavy metal contamination of Akaki River of Ethiopia on soil and metal toxicity on cultivated vegetable crops. Electronic Journal of Environmental, Agricultural and Food Chemistry 8:819−27

[111]

Amin N, Hussain A, Alamzeb S, Begum S. 2013. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry 136:1515−23

doi: 10.1016/j.foodchem.2012.09.058
[112]

Arora M, Kiran B, Rani S, Rani A, Kaur B, et al. 2008. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry 111:811−15

doi: 10.1016/j.foodchem.2008.04.049
[113]

Sardar K, Ali S, Hameed S, Afzal S, Fatima S, et al. 2013. Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental Management and Public Safety 2:172−79

doi: 10.15580/GJEMPS.2013.4.060413652
[114]

You R, Margenat A, Lanzas CS, Cañameras N, Carazo N, et al. 2020. Dose effect of Zn and Cu in sludge-amended soils on vegetable uptake of trace elements, antibiotics, and antibiotic resistance genes: Human health implications. Environmental Research 191:109879

doi: 10.1016/j.envres.2020.109879
[115]

Demirezen D, Aksoy A. 2006. Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni and exceeded for Cd and Pb. Journal of Food Quality 29:252−65

doi: 10.1111/j.1745-4557.2006.00072.x
[116]

Bradshaw A. 1997. Restoration of mined lands—using natural processes. Ecological Engineering 8:255−269

doi: 10.1016/S0925-8574(97)00022-0
[117]

Dzimado E. 2015. Assessment of contamination levels and estimation of dietary intake of heavy metals from selected imported fruits and vegetables in Ghana. Mississippi State University, Mississippi

[118]

Alam MGM, Snow ET, Tanaka A. 2003. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of The Total Environment 308:83−96

doi: 10.1016/S0048-9697(02)00651-4
[119]

Nabulo G, Oryem-Origa H, Diamond M. 2006. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environmental Research 101:42−52

doi: 10.1016/j.envres.2005.12.016
[120]

Gavrilescu M. 2004. Removal of heavy metals from the environment by biosorption. Engineering in Life Sciences 4:219−32

doi: 10.1002/elsc.200420026
[121]

Kim B.J, Jun H, Lee J, Linton K, Kim M, et al. 2017. Subjective well-being in older Chinese and Korean immigrants in the United States: effects of self-rated health and employment status. Social Work in Public Health 32:510−20

doi: 10.1080/19371918.2017.1373719
[122]

Sharma S, Singh B, Manchanda VK. 2015. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research 22:946−62

doi: 10.1007/s11356-014-3635-8
[123]

Kensa VM. 2011. Bioremediation - an overview. Journal of Industrial Pollution Control 27:161−68

[124]

Kumar V, Shahi SK, Singh S. 2018. Bioremediation: an eco-sustainable approach for restoration of contaminated sites. In Microbial bioprospecting for sustainable development, eds. Singh J, Sharma D, Kumar G, Sharma N. Singapore: Springer. pp. 115−36 https://doi.org/10.1007/978-981-13-0053-0_6

[125]

Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology 32:180

doi: 10.1007/s11274-016-2137-x
[126]

Sangvanich T, Morry J, Fox C, Ngamcherdtrakul W, Goodyear S, et al. 2014. Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica. ACS Applied Materials & Interfaces 6:5483−93

doi: 10.1021/am5007707
[127]

Rai PK. 2009. Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Critical Reviews in Environmental Science and Technology 39:697−753

doi: 10.1080/10643380801910058
[128]

Cunningham SD, Ow DW. 1996. Promises and prospects of phytoremediation. Plant Physiology 110:715−19

doi: 10.1104/pp.110.3.715
[129]

Wang Z, Ma L, Jia Z, Qin C. 2011. Current status of poplar for phytoremediation. 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 19−20 Feb. 2011, pp. 2031−34. China: IEEE https://doi.org/10.1109/CDCIEM.2011.304

[130]

Sharma P, Pandey S. 2014. Status of phytoremediation in world scenario. International Journal of Environmental Bioremediation & Biodegradation 2:178−91

[131]

Habib MK. 2007. Controlled biological and biomimetic systems for landmine detection. Biosensors and Bioelectronics 23:1−18

doi: 10.1016/j.bios.2007.05.005
[132]

Xie Q, Yan X, Liao X, Li X. 2009. The arsenic hyperaccumulator fern Pteris vittata L. Environmental Science & Technology 43:8488−95

doi: 10.1021/es9014647
[133]

Webb SM, Gaillard JF, Ma LQ, Tu C. 2003. XAS speciation of arsenic in a hyper-accumulating fern. Environmental Science & Technology 37:754−60

doi: 10.1021/es0258475
[134]

Greger M, Landberg T. 1999. Use of willow in phytoextraction. International Journal of Phytoremediatio 1:115−123

doi: 10.1080/15226519908500010
[135]

Brown KS. 1995. The green clean: The emerging field of phytoremediation takes root. BioScience 45:579−82

doi: 10.2307/1312760
[136]

Kaplan D. 2013. Absorption and adsorption of heavy metals by microalgae. In Handbook of microalgal culture: applied phycology and biotechnology, eds. Richmond A, Hu Q. Second Edition. UK: John Wiley & Sons. pp. 602−11 https://doi.org/10.1002/9781118567166.ch32

[137]

Satar R. 2010. Applications of soluble and immobilized plant peroxidases in the decolorization and remediation of textile dyes from polluted water. https://core.ac.uk/download/pdf/144521717.pdf

[138]

Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, et al. 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters 16:1339−59

doi: 10.1007/s10311-018-0762-3
[139]

Haq S, Bhatti AA, Dar ZA, Bhat SA. 2020. Phytoremediation of heavy metals: an eco-friendly and sustainable approach. In Bioremediation and Biotechnology, eds. Hakeem KR, Bhat RA, Qadri H. Switzerland: Springer, Cham. pp. 215−31 https://doi.org/10.1007/978-3-030-35691-0_10

[140]

Gavrilescu M. 2005. Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences 5:497−526

doi: 10.1002/elsc.200520098
[141]

Cunningham SD, Berti WR. 1993. Remediation of contaminated soils with green plants: an overview. In Vitro Cellular & Developmental Biology-Plant 29:207−12

doi: 10.1007/BF02632036
[142]

Kumawat K, Keshani, Nagpal S, Sharma P. 2021. Present scenario of bio-fertilizer production and marketing around the globe. In Biofertilizers, eds. Rakshit A, Meena VS, Parihar M, Singh HB, Singh AK. UK: Woodhead Publishing, Elsevier, pp. 389−413 https://doi.org/10.1016/B978-0-12-821667-5.00028-2

[143]

Burylo M, Dutoit T, Rey F. 2014. Species traits as practical tools for ecological restoration of marly eroded lands. Restoration Ecology 22:633−40

doi: 10.1111/rec.12113
[144]

Bhargava A, Carmona FF, Bhargava M, Srivastava S. 2012. Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management 105:103−20

doi: 10.1016/j.jenvman.2012.04.002
[145]

Fageria NK, Baligar VC, Li YC. 2008. The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of Plant Nutrition 31:1121−57

doi: 10.1080/01904160802116068
[146]

McBride MB, Simon T, Tam G, Wharton S. 2013. Lead and arsenic uptake by leafy vegetables grown on contaminated soils: effects of mineral and organic amendments. Water, Air, & Soil Pollution 224:1378

doi: 10.1007/s11270-012-1378-z
[147]

Wu F, Bao W, Li F, Wu N. 2008. Effects of drought stress and N supply on the growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings. Environmental and experimental botany 63:248−55

doi: 10.1016/j.envexpbot.2007.11.002
[148]

Ghosh M, Singh S. 2005. A review on phytoremediation of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research 3:1−18

[149]

Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN. 2019. Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. In Reviews of Environmental Contamination and Toxicology, ed. de Voogt P. Vol. 249:XIV, 201. Switzerland: Springer, Cham. pp. 71−131 https://doi.org/10.1007/398_2019_24

[150]

Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, et al. 2016. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research 183:26−41

doi: 10.1016/j.micres.2015.11.007
[151]

Oeffinger KC, Hudson MM. 2004. Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA: A Cancer Journal for Clinicians 54:208−36

doi: 10.3322/canjclin.54.4.208
[152]

Gall JE, Boyd RS, Rajakaruna N. 2015. Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment 187:201

doi: 10.1007/s10661-015-4436-3