[1]

Jiang F, Doudna JA. 2017. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics 46:505−29

doi: 10.1146/annurev-biophys-062215-010822
[2]

Mojica FJM, Montoliu L. 2016. On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends in Microbiology 24:811−20

doi: 10.1016/j.tim.2016.06.005
[3]

Wu S, Li Q, Yin C, Xue W, Song C. 2020. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics 10:4374−82

doi: 10.7150/thno.43360
[4]

Li J, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31:688−91

doi: 10.1038/nbt.2654
[5]

Shan S, Soltis PS, Soltis DE, Yang B. 2020. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems. Applications in Plant Sciences 8:e11314

doi: 10.1002/aps3.11314
[6]

Mao Y, Botella JR, Liu Y, Zhu J. 2019. Gene editing in plants: progress and challenges. National Science Review 6:421−37

doi: 10.1093/nsr/nwz005
[7]

Wolter F, Puchta H. 2018. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. The Plant Journal 94:767−75

doi: 10.1111/tpj.13899
[8]

Khan MZ, Haider S, Mansoor S, Amin I. 2019. Targeting plant ssDNA viruses with engineered miniature CRISPR-Cas14a. Trends in Biotechnology 37:800−804

doi: 10.1016/j.tibtech.2019.03.015
[9]

Collias D, Beisel CL. 2021. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications 12:555

doi: 10.1038/s41467-020-20633-y
[10]

Jia H, Wang N, Prasad M. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

doi: 10.1371/journal.pone.0093806
[11]

Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, et al. 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science 10:40

doi: 10.3389/fpls.2019.00040
[12]

Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, et al. 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science 7:1904

doi: 10.3389/fpls.2016.01904
[13]

Nishitani C, Hirai N, Komori S, Wada M, Okada K, et al. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6:31481

doi: 10.1038/srep31481
[14]

Lin CS, Hsu CT, Yang LH, Lee L, Fu J, et al. 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal 16:1295−310

doi: 10.1111/pbi.12870
[15]

Ye S, Chen G, Kohnen MV, Wang W, Cai C, et al. 2020. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnology Journal 18:1501−3

doi: 10.1111/pbi.13320
[16]

van Zeijl A, Wardhani TAK, Seifi Kalhor M, Rutten L, Bu F, et al. 2018. CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponia andersonii reveals novel phenotypes. Frontiers in Plant Science 9:284

doi: 10.3389/fpls.2018.00284
[17]

Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, et al. 2017. Efficient CRISPR/Cas9 genome editing of Phytoene desaturase in cassava. Frontiers in Plant Science 8:1780

doi: 10.3389/fpls.2017.01780
[18]

Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, et al. 2019. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnology Journal 17:421−34

doi: 10.1111/pbi.12987
[19]

Mehta D, Stürchler A, Anjanappa RB, Zaidi SS, Hirsch-Hoffmann M, et al. 2019. Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biology 20:80

doi: 10.1186/s13059-019-1678-3
[20]

Peng A, Chen S, Lei T, Xu L, He Y, et al. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnology Journal 15:1509−19

doi: 10.1111/pbi.12733
[21]

Jia H, Orbovic V, Jones JB, Wang N. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB1.3 infection. Plant Biotechnology Journal 14:1291−301

doi: 10.1111/pbi.12495
[22]

Jia H, Zhang Y, Orbović V, Xu J, White FF, et al. 2017. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnology Journal 15:817−23

doi: 10.1111/pbi.12677
[23]

Jia H, Orbović V, Wang N. 2019. CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnology Journal 17:1928−37

doi: 10.1111/pbi.13109
[24]

Zhang F, LeBlanc C, Irish VF, Jacob Y. 2017. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Reports 36:1883−87

doi: 10.1007/s00299-017-2202-4
[25]

Jia H, Xu J, Orbović V, Zhang Y, Wang N. 2017. Editing citrus genome via SaCas9/sgRNA system. Frontiers in Plant Science 8:2135

doi: 10.3389/fpls.2017.02135
[26]

Fister AS, Landherr L, Maximova SN, Guiltinan MJ. 2018. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Frontiers in Plant Science 9:268

doi: 10.3389/fpls.2018.00268
[27]

Breitler JC, Dechamp E, Campa C, Zebral Rodrigues LA, Guyot R, et al. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell, Tissue and Organ Culture 134:383−94

doi: 10.1007/s11240-018-1429-2
[28]

Ren C, Liu X, Zhang Z, Wang Y, Duan W, et al. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6:32289

doi: 10.1038/srep32289
[29]

Wang X, Tu M, Wang D, Liu J, Li Y, et al. 2018. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal 16:844−55

doi: 10.1111/pbi.12832
[30]

Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, et al. 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One 12:e0177966

doi: 10.1371/journal.pone.0177966
[31]

Ren C, Guo Y, Kong J, Lecourieux F, Dai Z, et al. 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biology 20:47

doi: 10.1186/s12870-020-2263-3
[32]

Wang Z, Wang S, Li D, Zhang Q, Li L, et al. 2018. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. Plant Biotechnology Journal 16:1424−33

doi: 10.1111/pbi.12884
[33]

Varkonyi-Gasic E, Wang T, Voogd C, Jeon S, Drummond RSM, et al. 2019. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal 17:869−80

doi: 10.1111/pbi.13021
[34]

Chang L, Wu S, Tian L. 2019. Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyltransferase in pomegranate (Punica granatum L.). Horticulture Research 6:123

doi: 10.1038/s41438-019-0206-7
[35]

Ma J, Wan D, Duan B, Bai X, Bai Q, et al. 2019. Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnology Journal 17:451−60

doi: 10.1111/pbi.12989
[36]

Zhou Y, Zhang Y, Wang X, Han X, An Y, et al. 2020. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. New Phytologist 227:407−26

doi: 10.1111/nph.16524
[37]

Fan D, Liu T, Li C, Jiao B, Li S, et al. 2015. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5:12217

doi: 10.1038/srep12217
[38]

Wang L, Ran L, Hou Y, Tian Q, Li C, et al. 2017. The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytologist 215:351−67

doi: 10.1111/nph.14569
[39]

Yang L, Zhao X, Ran L, Li C, Fan D, et al. 2017. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Scientific Reports 7:41209

doi: 10.1038/srep41209
[40]

Xu C, Fu X, Liu R, Guo L, Ran L, et al. 2017. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology 37:1713−26

doi: 10.1093/treephys/tpx093
[41]

Fan D, Wang X, Tang X, Ye X, Ren S, et al. 2018. Histone H3K9 demethylase JMJ25 epigenetically modulates anthocyanin biosynthesis in poplar. The Plant Journal 96:1121−36

doi: 10.1111/tpj.14092
[42]

Jiang Y, Guo L, Ma X, Zhao X, Jiao B, et al. 2017. The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiology 37:665−75

doi: 10.1093/treephys/tpx008
[43]

Elorriaga E, Klocko AL, Ma C, Strauss SH. 2018. Variation in mutation spectra among CRISPR/Cas9 mutagenized Poplars. Frontiers in Plant Science 9:594

doi: 10.3389/fpls.2018.00594
[44]

Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ. 2015. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytologist 208:298−301

doi: 10.1111/nph.13470
[45]

An Y, Zhou Y, Han X, Shen C, Wang S, et al. 2020. The GATA transcription factor GNC plays an important role in photosynthesis and growth in poplar. Journal of Experimental Botany 71:1969−84

doi: 10.1093/jxb/erz564
[46]

Ramos-Sánchez JM, Triozzi PM, Alique D, Geng F, Gao M, et al. 2019. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth. Current Biology 29:2402−2406.E4

doi: 10.1016/j.cub.2019.06.003
[47]

Fellenberg C, Corea O, Yan LH, Archinuk F, Piirtola EM, et al. 2020. Discovery of salicyl benzoate UDP-glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis. The Plant Journal 102:99−115

doi: 10.1111/tpj.14615
[48]

Triozzi PM, Schmidt HW, Dervinis C, Kirst M, Conde D. 2021. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba. Tree Physiology 41:2216−27

doi: 10.1093/treephys/tpab066
[49]

Maurya JP, Singh RK, Miskolczi PC, Prasad AN, Jonsson K, et al. 2020. Branching regulator BRC1 mediates photoperiodic control of seasonal growth in hybrid aspen. Current Biology 30:122−126.E2

doi: 10.1016/j.cub.2019.11.001
[50]

Li S, Lin YCJ, Wang P, Zhang B, Li M, et al. 2019. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. The Plant Cell 31:663−86

doi: 10.1105/tpc.18.00437
[51]

Cao S, Wang C, Ji H, Guo M, Cheng J, et al. 2021. Functional characterisation of the poplar atypical aspartic protease gene PtAP66 in wood secondary cell wall deposition. Forests 12:1002

doi: 10.3390/f12081002
[52]

Xu W, Cheng H, Zhu S, Cheng J, Ji H, et al. 2021. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. New Phytologist 231:1478−95

doi: 10.1111/nph.17338
[53]

An Y, Geng Y, Yao J, Fu C, Lu M, et al. 2020. Efficient genome editing in Populus using CRISPR/Cas12a. Frontiers in Plant Science 11:593938

doi: 10.3389/fpls.2020.593938
[54]

Cai L, Zhang L, Fu Q, Xu Z. 2018. Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas. PeerJ 6:e4812

doi: 10.7717/peerj.4812
[55]

Fan Y, Xin S, Dai X, Yang X, Huang H, et al. 2020. Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Industrial Crops and Products 146:112146

doi: 10.1016/j.indcrop.2020.112146
[56]

Cui Y, Xu J, Cheng M, Liao X, Peng S. 2018. Review of CRISPR/Cas9 sgRNA design tools. Interdisciplinary Sciences: Computational Life Sciences 10:455−65

doi: 10.1007/s12539-018-0298-z
[57]

Wang Z, He Z, Qu M, Liu Z, Wang C, et al. 2021. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. Forestry Research 1:16

doi: 10.48130/fr-2021-0016
[58]

Gelvin SB. 2017. Integration of Agrobacterium T-DNA into the plant genome. Annual Review of Genetics 51:195−217

doi: 10.1146/annurev-genet-120215-035320
[59]

Cook A, Bono F, Jinek M, Conti E. 2007. Structural biology of nucleocytoplasmic transport. Annual Review of Biochemistry 76:647−71

doi: 10.1146/annurev.biochem.76.052705.161529
[60]

Merkle T. 2010. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports 30:153−76

doi: 10.1007/s00299-010-0928-3
[61]

Meier I, Richards EJ, Evans DE. 2017. Cell biology of the plant nucleus. Annual Review of Plant Biology 68:139−72

doi: 10.1146/annurev-arplant-042916-041115
[62]

Sikorska N, Zuber H, Gobert A, Lange H, Gagliardi D. 2017. RNA degradation by the plant RNA exosome involves both phosphorolytic and hydrolytic activities. Nature Communications 8:2162

doi: 10.1038/s41467-017-02066-2
[63]

Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. 2016. Role of ubiquitin-mediated degradation system in plant biology. Frontiers in Plant Science 7:806

doi: 10.3389/fpls.2016.00806
[64]

Ellison EE, Nagalakshmi U, Gamo ME, Huang P, Dinesh-Kumar S, et al. 2020. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nature Plants 6:620−24

doi: 10.1038/s41477-020-0670-y
[65]

Ji X, Yang B, Wang D. 2020. Achieving plant genome editing while bypassing tissue culture. Trends in Plant Science 25:427−29

doi: 10.1016/j.tplants.2020.02.011
[66]

Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, et al. 2020. Plant gene editing through de novo induction of meristems. Nature Biotechnology 38:84−89

doi: 10.1038/s41587-019-0337-2
[67]

Liao T, Liu G, Guo L, Wang Y, Yao Y, et al. 2021. Bud initiation, microsporogenesis, megasporogenesis, and cone development in Platycladus orientalis. HortScience 56:85−93

doi: 10.21273/hortsci15479-20
[68]

Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, et al. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4:23−29

doi: 10.1038/s41477-017-0083-8
[69]

Kapiel TY. 2018. Speed breeding: a powerful innovative tool in agriculture. Innovative Techniques in Agriculture 2:413−15

[70]

Ochatt SJ, Sangwan RS. 2008. In vitro shortening of generation time in Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture 93:133−37

doi: 10.1007/s11240-008-9351-7
[71]

Samineni S, Sen M, Sajja SB, Gaur PM. 2020. Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. The Crop Journal 8:164−69

doi: 10.1016/j.cj.2019.08.003
[72]

Collard BCY, Beredo JC, Lenaerts B, Mendoza R, Santelices R, et al. 2017. Revisiting rice breeding methods - evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Production Science 20:337−52

doi: 10.1080/1343943X.2017.1391705
[73]

Jähne F, Hahn V, Würschum T, Leiser WL. 2020. Speed breeding short-day crops by LED-controlled light schemes. Theoretical and Applied Genetics 133:2335−42

doi: 10.1007/s00122-020-03601-4
[74]

Zheng Z, Wang HB, Chen GD, Yan GJ, Liu CJ. 2013. A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311−16

doi: 10.1007/s10681-013-0909-z
[75]

Kong J, Martin-Ortigosa S, Finer J, Orchard N, Gunadi A, et al. 2020. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Frontiers in Plant Science 11:572319

doi: 10.3389/fpls.2020.572319
[76]

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79

doi: 10.1038/s41587-020-0703-0
[77]

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015

doi: 10.1105/tpc.16.00124
[78]

Mianné J, Codner GF, Caulder A, Fell R, Hutchison M, et al. 2017. Analysing the outcome of CRISPR-aided genome editing in embryos: screening, genotyping and quality control. Methods 121−122:68−76

doi: 10.1016/j.ymeth.2017.03.016
[79]

van Overbeek M, Capurso D, Carter MM, Thompson MS, Frias E, et al. 2016. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Molecular Cell 63:633−46

doi: 10.1016/j.molcel.2016.06.037
[80]

Shen MW, Arbab M, Hsu JY, Worstell D, Culbertson SJ, et al. 2018. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563:646−51

doi: 10.1038/s41586-018-0686-x
[81]

Allen F, Crepaldi L, Alsinet C, Strong AJ, Kleshchevnikov V, et al. 2019. Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nature Biotechnology 37:64−72

doi: 10.1038/nbt.4317
[82]

Leenay RT, Aghazadeh A, Hiatt J, Tse D, Roth TL, et al. 2019. Large dataset enables prediction of repair after CRISPR–Cas9 editing in primary T cells. Nature Biotechnology 37:1034−37

doi: 10.1038/s41587-019-0203-2
[83]

Li VR, Zhang Z, Troyanskaya OG. 2021. CROTON: an automated and variant-aware deep learning framework for predicting CRISPR/Cas9 editing outcomes. Bioinformatics 37:i342−i348

doi: 10.1093/bioinformatics/btab268
[84]

Pickar-Oliver A, Gersbach CA. 2019. The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology 20:490−507

doi: 10.1038/s41580-019-0131-5
[85]

Adli M. 2018. The CRISPR tool kit for genome editing and beyond. Nature Communications 9:1911

doi: 10.1038/s41467-018-04252-2
[86]

Thakore PI, Black JB, Hilton IB, Gersbach CA. 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nature Methods 13:127−37

doi: 10.1038/nmeth.3733
[87]

Dominguez AA, Lim WA, Qi LS. 2016. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nature Reviews Molecular Cell Biology 17:5−15

doi: 10.1038/nrm.2015.2
[88]

Shalem O, Sanjana NE, Zhang F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nature Reviews Genetics 16:299−311

doi: 10.1038/nrg3899
[89]

Singh V. 2020. An introduction to genome editing CRISPR-Cas systems. In Genome Engineering via CRISPR-Cas9 System, eds. Singh V, Dhar PK. Academic Press, Elsevier. pp. 1−13 https://doi.org/10.1016/B978-0-12-818140-9.00001-5

[90]

Goell JH, Hilton IB. 2021. CRISPR/Cas-based epigenome editing: advances, applications, and clinical utility. Trends in Biotechnology 39:678−91

doi: 10.1016/j.tibtech.2020.10.012
[91]

Moradpour M, Abdulah SNA. 2020. CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnology Journal 18:32−44

doi: 10.1111/pbi.13232
[92]

Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC. 2021. CRISPR/dCas9-based systems: mechanisms and applications in plant sciences. Plants 10:2055

doi: 10.3390/plants10102055
[93]

Atkins PA, Voytas DF. 2020. Overcoming bottlenecks in plant gene editing. Current Opinion in Plant Biology 54:79−84

doi: 10.1016/j.pbi.2020.01.002
[94]

Huang TK, Puchta H. 2019. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination. Plant Cell Reports 38:443−53

doi: 10.1007/s00299-019-02379-0
[95]

Yang B, Yang L, Chen J. 2019. Development and application of base editors. The CRISPR Journal 2:91−104

doi: 10.1089/crispr.2019.0001
[96]

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149−57

doi: 10.1038/s41586-019-1711-4
[97]

Matsoukas IG. 2020. Prime editing: genome editing for rare genetic diseases without double-strand breaks or donor DNA. Frontiers in Genetics 11:528

doi: 10.3389/fgene.2020.00528
[98]

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420−24

doi: 10.1038/nature17946
[99]

Marzec M, Hensel G. 2018. Targeted base editing systems are available for plants. Trends in Plant Science 23:955−57

doi: 10.1016/j.tplants.2018.08.011
[100]

Marzec M, Hensel G. 2020. Prime editing: game changer for modifying plant genomes. Trends in Plant Science 25:722−24

doi: 10.1016/j.tplants.2020.05.008