[1]

UNFCCC. 2021. Glasgow Leaders' Declaration on Forests and Land Use. https://ukcop26.org/glasgow-leaders-declaration-on-forests-and-land-use/

[2]

Crowther TW, Glick HB, Covey KR, Bettigole C, Maynard DS, et al. 2015. Mapping tree density at a global scale. Nature 525:201−5

doi: 10.1038/nature14967
[3]

FAO. 2020. Global Forest Resources Assessment 2020: Main Report. FAO, Rome. https://www.fao.org/documents/card/en/c/ca9825en

[4]

Creed IF, van Noordwijk M. 2018. Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities - A Global Assessment Report. IUFRO World Series: Volume 38, 192 pp. www.iufro.org/publications/series/world-series/article/2018/07/10/world-series-vol-38-forest-and-water-on-a-changing-planet-vulnerability-adaptation-and-governan/

[5]

Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, et al. 2017. Trees, forests and water: Cool insights for a hot world. Global Environmental Change 43:51−61

doi: 10.1016/j.gloenvcha.2017.01.002
[6]

Ellison D, Wang-Erlandsson L, van der Ent R, van Noordwijk M. 2019. Upwind forests: managing moisture recycling for nature-based resilience. Unasylva 70:14−26

[7]

Skole DL, Mbow C, Mugabowindekwe M, Brandt MS, Samek JH. 2021. Trees outside of forests as natural climate solutions. Nature Climate Change 11:1013−16

doi: 10.1038/s41558-021-01230-3
[8]

IPCC. 2022. Climate Change 2022: Mitigation of Climate Change - Working Group III contribution to the WGIII Sixth Assessment Report of the Intergovernmental Panel on Climate Change. p. 2913. www.ipcc.ch/report/ar6/wg3

[9]

Dhyani S, Murthy IK, Kadaverugu R, Dasgupta R, Kumar M, et al. 2021. Agroforestry to achieve global climate adaptation and mitigation targets: are South Asian countries sufficiently prepared? Forests 12:303

doi: 10.3390/f12030303
[10]

Meybeck A, Gitz V, Wolf J, Wong T. 2020. Addressing forestry and agroforestry in National Adaptation Plans. Food and Agriculture Organization of the United Nations and Center for International Forestry Research, Rome/Bogor. https://www.fao.org/documents/card/en/c/cb1203en

[11]

van Noordwijk M, Coe R, Sinclair FL, Luedeling E, Bayala J, et al. 2021. Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley. Mitigation and Adaptation Strategies for Global Change 26:18

doi: 10.1007/s11027-021-09954-5
[12]

Roe S, Streck C, Obersteiner M, Frank S, Griscom B, et al. 2019. Contribution of the land sector to a 1.5 °C world. Nature Climate Change 9:817−28

doi: 10.1038/s41558-019-0591-9
[13]

IPCC 2019. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems - Summary for Policymakers. IPCC, Switzerland. www.ipcc.ch/srccl/chapter/summary-for-policymakers

[14]

Messerli S. 2011. Agroforestry – A way forward to the sustainable management of the Walnut Fruit Forests in Kyrgyzstan. Schweizerische Zeitschrift Fur Forstwesen 153:392−96

doi: 10.3188/szf.2002.0392
[15]

van Noordwijk M. 2018. Agroforestry as part of climate change response. IOP Conference Series: Earth and Environmental Science 200:012002

doi: 10.1088/1755-1315/200/1/012002
[16]

Sills J, Harrison RD, Gassner A. 2020. Agricultural lands key to mitigation and adaptation. Science 367:518

doi: 10.1126/science.aba6211
[17]

IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Switzerland. www.ipcc.ch/report/2019-refinement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/

[18]

Smith P, Martino D, Cai Z, Gwary D, Janzen H, et al. 2008. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences 363:789−813

doi: 10.1098/rstb.2007.2184
[19]

Cardinael R, Umulisa V, Toudert A, Olivier A, Bockel L, et al. 2018. Revisiting IPCC Tier 1 coefficients for soil organic and biomass carbon storage in agroforestry systems. Environmental Research Letters 13:124020−22

doi: 10.1088/1748-9326/aaeb5f
[20]

Golicz K, Ghazaryan G, Niether W, Wartenberg AC, Breuer L, et al. 2021. The Role of small woody landscape features and agroforestry systems for national carbon budgeting in Germany. Land 10:1028

doi: 10.3390/land10101028
[21]

Tilman D. 1999. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices. PNAS 96:5995−6000

doi: 10.1073/pnas.96.11.5995
[22]

Friedlingstein P, O'Sullivan M, Jones MW, Andrew RM, Hauck J, et al. 2020. Global Carbon Budget 2020. Earth System Science Data 12:3269−340

doi: 10.5194/essd-12-3269-2020
[23]

Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science 362:eaau6020

doi: 10.1126/science.aau6020
[24]

Smith P, Calvin K, Nkem J, Campbell D, Cherubini F, et al. 2020. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology 26:1532−75

doi: 10.1111/gcb.14878
[25]

Webb NP, Marshall NA, Stringer LC, Reed MS, Chappell A, et al. 2017. Land degradation and climate change: building climate resilience in agriculture. Frontiers in Ecology and the Environment 15:450−59

doi: 10.1002/fee.1530
[26]

Alexander P, Reddy A, Brown C, Henry RC, Rounsevell MDA. 2019. Transforming agricultural land use through marginal gains in the food system. Global Environmental Change 57:101932

doi: 10.1016/j.gloenvcha.2019.101932
[27]

Bossio DA, Obersteiner M, Wironen M, Jung M, Wood S, et al. 2021. Foodscapes: Toward Food System Transition. The Nature Conservancy, International Institute for Applied Systems Analysis, and SYTEMIQ. www.nature.org/en-us/what-we-do/our-insights/perspectives/foodscapes-regenerative-food-systems-nature-people/

[28]

Handa AK, Sirohi C, Arunachalam A, Chavan SB. 2020. Agroforestry interventions for carbon sequestration and improving degraded lands. Climate Change and Environmental Sustainability 8:3−12

doi: 10.5958/2320-642x.2020.00001.0
[29]

Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, et al. 2016. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports 2016:29987

doi: 10.1038/srep29987
[30]

Gibbs H, Yui S, Pelvin R. 2014. New Estimates of Soil and Biomass Carbon Stocks for Global Economic Models. GTAP Technical Paper No. 33. Global Trade Analysis Project. 31 pp. www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=4344

[31]

Ruesch A, Gibbs HK. 2008. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000. Carbon Dioxide Information Analysis Center, ORNL, Tennessee, USA. http://cdiac.ess-dive.lbl.gov

[32]

Spawn SA, Gibbs HK. 2020. Global aboveground and belowground biomass carbon density maps for the Year 2010. ORNL DAAC, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1763

[33]

Spawn SA, Sullivan CC, Lark TJ, Gibbs HK. 2020. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Scientific Data 2020:112

doi: 10.1038/s41597-020-0444-4
[34]

Zomer RJ, Trabucco A, Coe R, Place F. 2009. Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper - World Agroforestry Centre, Nairobi, Kenya. www.worldagroforestry.org/publication/trees-farm-analysis-global-extent-and-geographical-patterns-agroforestry

[35]

Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, et al. 2017. Natural climate solutions. PNAS 114:11645−50

doi: 10.1073/pnas.1710465114
[36]

Bossio DA, Cook-Patton SC, Ellis PW, Fargione J, Sanderman J, et al. 2020. The role of soil carbon in natural climate solutions. Nature Sustainability 3:391−98

doi: 10.1038/s41893-020-0491-z
[37]

Abbas F, Hammad HM, Fahad S, Cerdà A, Rizwan M, et al. 2017. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environmental Science and Pollution Research International 24:11177−91

doi: 10.1007/s11356-017-8687-0
[38]

Mbow C, van Noordwijk M, Luedeling E, Neufeldt H, Minang PA, et al. 2014. Agroforestry solutions to address food security and climate change challenges in Africa. Current Opinion in Environmental Sustainability 2014:61−67

doi: 10.1016/j.cosust.2013.10.014
[39]

Gonçalves B, Morais MC, Pereira S, Mosquera-Losada MR, Santos M. 2021. Tree–crop ecological and physiological interactions within climate change contexts: A mini-review. Frontiers in Ecology and Evolution 9:661978

doi: 10.3389/fevo.2021.661978
[40]

Lorenz K, Lal R. 2014. Soil organic carbon sequestration in agroforestry systems. Agronomy for Sustainable Development 34:443−54

doi: 10.1007/s13593-014-0212-y
[41]

Ramachandran Nair PK, Nair VD, Mohan Kumar B, Showalter JM. 2010. Carbon Sequestration in Agroforestry Systems. In Advances in Agronomy, ed. Sparks DL. Vol. 108:315. UK: Academic Press, Elsevier. pp. 237–307 https://doi.org/10.1016/S0065-2113(10)08005-3

[42]

Zomer RJ, Coe R, Place F, van Noordwijk M, Xu J. 2014. Trees on farms: An update and reanalysis of agroforestry's global extent and socio-ecological characteristics. ICRAF Working Paper - World Agroforestry Centre, Nairobi, Kenya. www.worldagroforestry.org/publication/trees-farms-update-and-reanalysis-agroforestrys-global-extent-and-socio-ecological

[43]

Houghton RA, Byers B, Nassikas AA. 2015. A role for tropical forests in stabilizing atmospheric CO2. Nature Climate Change 5:1022−23

doi: 10.1038/nclimate2869
[44]

Hawken P (Ed.). 2017. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. Penguin Books. https://drawdown.org/the-book

[45]

Toensmeier E. 2016. The Carbon Farming Solution: A Global Toolkit of Perennial Crops and Regenerative Agriculture Practices for Climate Change Mitigation and Food Security. Vermont: Chelsea Green Publishing.

[46]

Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, et al. 2013. Untangling the confusion around land carbon science and climate change mitigation policy. Nature Climate Change 3:552−57

doi: 10.1038/nclimate1804
[47]

Goldstein A, Turner WR, Spawn SA, Anderson-Teixeira KJ, Cook-Patton S, et al. 2020. Protecting irrecoverable carbon in Earth's ecosystems. Nature Climate Change 10:287−95

doi: 10.1038/s41558-020-0738-8
[48]

Cook-Patton SC, Drever CR, Griscom BW, Hamrick K, Hardman H, et al. 2021. Protect, manage and then restore lands for climate mitigation. Nature Climate Change 11:1027−34

doi: 10.1038/s41558-021-01198-0
[49]

Pacala S, Socolow R. 2004. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968−72

doi: 10.1126/science.1100103
[50]

Van Den Berge S, Vangansbeke P, Baeten L, Vanhellemont M, Vanneste T, et al. 2021. Biomass Increment and Carbon Sequestration in Hedgerow-grown Trees. Dendrochronologia 70:125894

doi: 10.1016/j.dendro.2021.125894
[51]

Corbeels M, Cardinael R, Naudin K, Guibert H, Torquebiau E. 2019. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil and Tillage Research 188:16−26

doi: 10.1016/j.still.2018.02.015
[52]

Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, et al. 2017. Soil carbon 4 per mille. Geoderma 292:59−86

doi: 10.1016/j.geoderma.2017.01.002
[53]

Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, et al. 2017. Agroforestry Can Enhance Food Security While Meeting Other Sustainable Development Goals. Tropical Conservation Science 10:1940082917720667

doi: 10.1177/1940082917720667
[54]

Deng L, Liu S, Kim DG, Peng C, Sweeney S, et al. 2017. Past and future carbon sequestration benefits of China's grain for green program. Global Environmental Change 47:13−20

doi: 10.1016/j.gloenvcha.2017.09.006
[55]

Chapman M, Walker WS, Cook-Patton SC, Ellis PW, Farina M, Griscom BW, et al. 2020. Large climate mitigation potential from adding trees to agricultural lands. Global Change Biology 26:4357−65

doi: 10.1111/gcb.15121
[56]

Seghieri J, Droy I, Hadgu K, Place F. 2021. Introduction to the special issue "scaling up of agroforestry innovations: enhancing food, nutrition and income security". Agroforestry Systems 95:1245−49

doi: 10.1007/s10457-021-00689-5
[57]

Townshend JRG, Carroll M, Dimiceli C, Sohlberg R, Hansen M, et al. 2011. Vegetation Continuous Fields MOD44B, Percent Tree Cover, Collection 5, University of Maryland, College Park, Maryland.

[58]

Penman J, Gytarsky M, Hiraishi T, Kruger D, Pipatti R, et al (Eds.). 2003. Good practice guidance for land use, land-use change and forestry. IPCC/Institute for Global Environmental Strategies www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf

[59]

IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories - Volume 4: Agriculture, Forestry and Other Land Use. Institute for Global Environmental Strategies (IGES), Kamiyamaguchi Hayama, Japan. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html

[60]

Bartholomé E, Belward AS. 2005. GLC2000: a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26:1959−77

doi: 10.1080/01431160412331291297
[61]

GADM. 2018. GADM: Global Administrative Areas Database v3.4. GADM. www.gadm.org

[62]

Zomer RJ, Trabucco A, Bossio DA, Verchot LV. 2008. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment 126:67−80

doi: 10.1016/j.agee.2008.01.014
[63]

Trabucco A, Zomer RJ. 2019. Global Aridity Index and Potential Evapotranspiration Climate Database v2. CGIAR-Consortium for Spatial Information. https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-evapotranspiration-climate-database-v2/

[64]

Trabucco A, Zomer RJ. 2009. Global Aridity Index and Global Potential Evapo-Transpiration Geospatial Database. CGIAR Consortium for Spatial Information.