[1]

García-Segovia P, García-Alcaraz V, Balasch-Parisi S, Martínez-Monzó J. 2020. 3D printing of gels based on xanthan/konjac gums. Innovative Food Science & Emerging Technologies 64:102343

doi: 10.1016/j.ifset.2020.102343
[2]

Yang F, Zhang M, Bhandari B. 2017. Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition 57:3145−53

doi: 10.1080/10408398.2015.1094732
[3]

Theagarajan R, Moses JA, Anandharamakrishnan C. 2020. 3D extrusion printability of rice starch and optimization of process variables. Food and Bioprocess Technology 13:1048−62

doi: 10.1007/s11947-020-02453-6
[4]

Lipton JI, Cutler M, Nigl F, Cohen D, Lipson H. 2015. Additive manufacturing for the food industry. Trends in Food Science & Technology 43:114−23

doi: 10.1016/j.jpgs.2015.02.004
[5]

Derossi A, Caporizzi R, Oral MO, Severini C. 2020. Analyzing the effects of 3D printing process per se on the microstructure and mechanical properties of cereal food products. Innovative Food Science & Emerging Technologies 66:102531

doi: 10.1016/j.ifset.2020.102531
[6]

Pallottino F, Hakola L, Costa C, Antonucci F, Figorilli S, et al. 2016. Printing on food or food printing: a review. Food and Bioprocess Technology 9:725−33

doi: 10.1007/s11947-016-1692-3
[7]

Piyush, Kumar R, Kumar R. 2020. 3D printing of food materials: A state of art review and future applications. Materials Today: Proceedings 33:1463−67

doi: 10.1016/j.matpr.2020.02.005
[8]

Godoi FC, Prakash S, Bhandari BR. 2016. 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44−54

doi: 10.1016/j.jfoodeng.2016.01.025
[9]

Wilson SA, Cross LM, Peak CW, Gaharwar AK. 2017. Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS Applied Materials & Interfaces 9:43449−58

doi: 10.1021/acsami.7b13602
[10]

Pérez B, Nykvist H, Brøgger AF, Larsen MB, Falkeborg MF. 2019. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chemistry 287:249−57

doi: 10.1016/j.foodchem.2019.02.090
[11]

Pulatsu E, Su JW, Lin J, Lin M. 2020. Factors affecting 3D printing and post-processing capacity of cookie dough. Innovative Food Science & Emerging Technologies 61:102316

doi: 10.1016/j.ifset.2020.102316
[12]

Xing X, Chitrakar B, Hati S, Xie S, Li H, et al. 2022. Development of black fungus-based 3D printed foods as dysphagia diet: Effect of gums incorporation. Food Hydrocolloids 123:107173

doi: 10.1016/j.foodhyd.2021.107173
[13]

Liu Z, Bhandari B, Prakash S, Mantihal S, Zhang M. 2019. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids 87:413−24

doi: 10.1016/j.foodhyd.2018.08.026
[14]

Dick A, Dong X, Bhandari B, Prakash S. 2021. The role of hydrocolloids on the 3D printability of meat products. Food Hydrocolloids 119:106879

doi: 10.1016/j.foodhyd.2021.106879
[15]

Diañez I, Gallegos C, Brito-de la Fuente E, Martínez I, Valencia C, et al. 2019. 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids 87:321−30

doi: 10.1016/j.foodhyd.2018.08.010
[16]

Sun R, Song G, Zhang H, Zhang H, Chi Y, et al. 2021. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation. LWT 150:112020

doi: 10.1016/j.lwt.2021.112020
[17]

Keerthana K, Anukiruthika T, Moses JA, Anandharamakrishnan C. 2020. Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering 287:110116

doi: 10.1016/j.jfoodeng.2020.110116
[18]

Xiao K, Liu Q, Wang L, Zhang B, Zhang W, et al. 2020. Prediction of soluble solid content of Agaricus bisporus during ultrasound-assisted osmotic dehydration based on hyperspectral imaging. LWT 122:109030

doi: 10.1016/j.lwt.2020.109030
[19]

Usman M, Murtaza G, Ditta A. 2021. Nutritional, medicinal, and cosmetic value of bioactive compounds in button mushroom (Agaricus bisporus): A Review. Applied Sciences 11:5943

doi: 10.3390/app11135943
[20]

Valverde ME, Hernández-Pérez T, Paredes-López O. 2015. Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology 2015:376387

doi: 10.1155/2015/376387
[21]

Athaillah ZA, Park JW. 2016. Characterization of surimi slurries and their films derived from myofibrillar proteins with different extraction methods. Food Bioscience 15:118−25

doi: 10.1016/j.fbio.2016.07.002
[22]

Yang G, Tao Y, Wang P, Xu X, Zhu X. 2022. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product. LWT 154:112693

doi: 10.1016/j.lwt.2021.112693
[23]

Liu Y, Liang X, Saeed A, Lan W, Qin W. 2019. Properties of 3D printed dough and optimization of printing parameters. Innovative Food Science & Emerging Technologies 54:9−18

doi: 10.1016/j.ifset.2019.03.008
[24]

Huang M, Wang H, Xu X, Lu X, Song X, et al. 2020. Effects of nanoemulsion-based edible coatings with composite mixture of rosemary extract and ε-poly-L-lysine on the shelf life of ready-to-eat carbonado chicken. Food Hydrocolloids 102:105576

doi: 10.1016/j.foodhyd.2019.105576
[25]

Zeng X, Chen H, Chen L, Zheng B. 2021. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Food Chemistry 342:128362

doi: 10.1016/j.foodchem.2020.128362
[26]

Zheng L, Liu J, Liu R, Xing Y, Jiang H. 2021. 3D printing performance of gels from wheat starch, flour and whole meal. Food Chemistry 356:129546

doi: 10.1016/j.foodchem.2021.129546
[27]

Liu Y, Liu D, Wei G, Ma Y, Bhandari B, et al. 2018. 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate. Innovative Food Science & Emerging Technologies 49:116−26

doi: 10.1016/j.ifset.2018.07.018
[28]

Liu Z, Zhang M, Bhandari B, Wang Y. 2017. 3D printing: Printing precision and application in food sector. Trends in Food Science & Technology 69:83−94

doi: 10.1016/j.jpgs.2017.08.018
[29]

Shi Y, Zhang M, Bhandari B. 2021. Effect of addition of beeswax based oleogel on 3D printing of potato starch-protein system. Food Structure 27:100176

doi: 10.1016/j.foostr.2021.100176
[30]

Gaillard Y, Mija A, Burr A, Darque-Ceretti E, Felder E, et al. 2011. Green material composites from renewable resources: Polymorphic transitions and phase diagram of beeswax/rosin resin. Thermochimica Acta 521:90−97

doi: 10.1016/j.tca.2011.04.010
[31]

Tian H, Wang K, Lan H, Wang Y, Hu Z, et al. 2021. Effect of hybrid gelator systems of beeswax-carrageenan-xanthan on rheological properties and printability of litchi inks for 3D food printing. Food Hydrocolloids 113:106482

doi: 10.1016/j.foodhyd.2020.106482
[32]

Higaki K, Koyano T, Hachiya I, Sato K. 2004. In situ optical observation of microstructure of β-fat gel made of binary mixtures of high-melting and low-melting fats. Food Research International 37:2−10

doi: 10.1016/j.foodres.2003.09.006
[33]

Liu H, Zheng J, Liu P, Zeng F. 2018. Pulverizing processes affect the chemical quality and thermal property of black, white, and green pepper (Piper nigrum L.). Journal of Food Science and Technology 55:2130−42

doi: 10.1007/s13197-018-3128-8