[1]

Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, et al. 2011. The genome of Theobroma cacao. Nature Genetics 43:101−8

doi: 10.1038/ng.736
[2]

Ashihara H, Crozier A. 2001. Caffeine: a well known but little mentioned compound in plant science. Trends in Plant Science 6:407−13

doi: 10.1016/S1360-1385(01)02055-6
[3]

Lu H, Zhang J, Yang Y, Yang X, Xu B, et al. 2016. Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau. Scientific Reports 6:18955

doi: 10.1038/srep18955
[4]

Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S. 2015. Tea and its consumption: benefits and risks. Critical Reviews in Food Science and Nutrition 55:939−54

doi: 10.1080/10408398.2012.678949
[5]

Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[6]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[7]

Taniguchi F, Kimura K, Saba T, Ogino A, Yamaguchi S, et al. 2014. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genetics & Genomes 10:1555−65

doi: 10.1007/s11295-014-0779-0
[8]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[9]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[10]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into genome evolution and adaptation of tea plants. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[11]

Zhang Q, Li W, Li K, Nan H, Shi C, et al. 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Molecular Plant 13:935−38

doi: 10.1016/j.molp.2020.04.009
[12]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[13]

Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, et al. 2019. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nature Communications 10:1784

doi: 10.1038/s41467-018-08148-z
[14]

Morin PA, Luikart G, Wayne RK, the SNP workshop group. 2004. SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution 19:208−16

doi: 10.1016/j.tree.2004.01.009
[15]

Wellenreuther M, Mérot C, Berdan E, Bernatchez L. 2019. Going beyond SNPs: The role of structural genomic variants in adaptive evolution and species diversification. Molecular Ecology 28:1203−9

doi: 10.1111/mec.15066
[16]

Li Y, Zhou G, Ma J, Jiang W, Jin L, et al. 2014. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nature Biotechnology 32:1045−52

doi: 10.1038/nbt.2979
[17]

Tao Y, Zhao X, Mace E, Henry R, Jordan D. 2019. Exploring and exploiting pan-genomics for crop improvement. Molecular Plant 12:156−69

doi: 10.1016/j.molp.2018.12.016
[18]

Zhang Z, Mao L, Chen H, Bu F, Li G, et al. 2015. Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. The Plant Cell 27:1595−604

doi: 10.1105/tpc.114.135848
[19]

Gaut BS, Seymour DK, Liu Q, Zhou Y. 2018. Demography and its effects on genomic variation in crop domestication. Nature Plants 4:512−20

doi: 10.1038/s41477-018-0210-1
[20]

Alonge M, Wang X, Benoit M, Soyk S, Pereira L, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145−161.E23

doi: 10.1016/j.cell.2020.05.021
[21]

Liu Y, Du H, Li P, Shen Y, Peng H, et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 182:162−176.E13

doi: 10.1016/j.cell.2020.05.023
[22]

Tattini L, D'Aurizio R, Magi A. 2015. Detection of genomic structural variants from next-generation sequencing data. Frontiers in Bioengineering and Biotechnology 3:92

doi: 10.3389/fbioe.2015.00092
[23]

Caicedo AL, Williamson SH, Hernandez RD, Boyko A, Fledel-Alon A, et al. 2007. Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genetics 3:e0030163

doi: 10.1371/journal.pgen.0030163
[24]

Zhu Q, Zheng X, Luo J, Gaut BS, Ge S. 2007. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. Molecular Biology and Evolution 24:875−88

doi: 10.1093/molbev/msm005
[25]

Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, et al. 2005. The effects of artificial selection on the maize genome. Science 308:1310−14

doi: 10.1126/science.1107891
[26]

Doebley JF, Gaut BS, Smith BD. 2006. The molecular genetics of crop domestication. Cell 127:1309−21

doi: 10.1016/j.cell.2006.12.006
[27]

Lu J, Tang T, Tang H, Huang J, Shi S, et al. 2006. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends in Genetics 22:126−31

doi: 10.1016/j.tig.2006.01.004
[28]

Liu Q, Zhou Y, Morrell PL, Gaut BS. 2017. Deleterious variants in Asian rice and the potential cost of domestication. Molecular Biology and Evolution 34:908−24

doi: 10.1093/molbev/msw296
[29]

Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, et al. 2017. The interplay of demography and selection during maize domestication and expansion. Genome Biology 18:215

doi: 10.1186/s13059-017-1346-4
[30]

Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, et al. 2018. Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods 15:461−68

doi: 10.1038/s41592-018-0001-7
[31]

Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, et al. 2016. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32:1220−22

doi: 10.1093/bioinformatics/btv710
[32]

Layer RM, Chiang C, Quinlan AR, Hall IM. 2014. LUMPY: a probabilistic framework for structural variant discovery. Genome Biology 15:R84

doi: 10.1186/gb-2014-15-6-r84
[33]

Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, et al. 2012. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333−i339

doi: 10.1093/bioinformatics/bts378
[34]

Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, et al. 2017. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nature Communications 8:14061

doi: 10.1038/ncomms14061
[35]

Shcherban AB. 2015. Repetitive DNA sequences in plant genomes. Russian Journal of Genetics: Applied Research 5:159−67

doi: 10.1134/S2079059715030168
[36]

Eagen KP. 2018. Principles of chromosome architecture revealed by Hi-C. Trends in Biochemical Sciences 43:469−78

doi: 10.1016/j.tibs.2018.03.006
[37]

Dong P, Tu X, Chu P, Lü P, Zhu N, et al. 2017. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Molecular Plant 10:1497−509

doi: 10.1016/j.molp.2017.11.005
[38]

Su X, Wang W, Xia T, Gao L, Shen G, et al. 2018. Characterization of a heat responsive UDP: Flavonoid glucosyltransferase gene in tea plant (Camellia sinensis). PLoS One 13:e0207212

doi: 10.1371/journal.pone.0207212
[39]

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303

doi: 10.1101/gr.107524.110
[40]

Alexander DH, Lange K. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12:246

doi: 10.1186/1471-2105-12-246
[41]

Zhang W, Rong J, Wei C, Gao L, Chen J, et al. 2018. Domestication origin and spread of cultivated tea plants. Biodiversity Science 26:357−72

doi: 10.17520/biods.2018006
[42]

Yoon S, Xuan Z, Makarov V, Ye K, Sebat J. 2009. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Research 19:1586−92

doi: 10.1101/gr.092981.109
[43]

Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, et al. 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology 33:408−14

doi: 10.1038/nbt.3096
[44]

Song C, Härtl K, McGraphery K, Hoffmann T, Schwab W. 2018. Attractive but Toxic: Emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Molecular Plant 11:1225−36

doi: 10.1016/j.molp.2018.09.001
[45]

Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53:585−99

doi: 10.1016/j.foodres.2013.02.011
[46]

Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, et al. 2014. Current perspectives and the future of domestication studies. PNAS 111:6139−6146

doi: 10.1073/pnas.1323964111
[47]

Kou Y, Liao Y, Toivainen T, Lv Y, Tian X, et al. 2020. Evolutionary genomics of structural variation in Asian rice (Oryza sativa) domestication. Molecular Biology and Evolution 37:3507−24

doi: 10.1093/molbev/msaa185
[48]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[49]

Deng W, Ogita S, Ashihara H. 2008. Biosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensis. Phytochemistry Letters 1:115−19

doi: 10.1016/j.phytol.2008.06.002
[50]

Kato M, Ashihara H. 2008. Biosynthesis and catabolism of purine alkaloids in Camellia plants. Natural Product Communications 3:1934578X0800300

doi: 10.1177/1934578x0800300907
[51]

Suzuki, T. 1972. The participation of S-adenosylmethionine in the biosynthesis of caffeine in the tea plant. FEBS Letters 24:18−20

doi: 10.1016/0014-5793(72)80815-9
[52]

Ashihara H, Yokota T, Crozier A. Purine Alkaloids, Cytokinins, and Purine-Like Neurotoxin Alkaloids. In Natural Products, eds. Ramawat KG, Mérillon JM. Heidelberg: Springer Berlin Heidelberg. pp. 953–75 https://doi.org/10.1007/978-3-642-22144-6_32.

[53]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[54]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[55]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078−79

doi: 10.1093/bioinformatics/btp352
[56]

Chiang C, Layer RM, Faust GG, Lindberg MR, Rose DB, et al. 2015. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nature Methods 12:966−68

doi: 10.1038/nmeth.3505
[57]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[58]

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19:1655−64

doi: 10.1101/gr.094052.109
[59]

Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C, et al. 2015. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology 16:259

doi: 10.1186/s13059-015-0831-x
[60]

Weir BS, Cockerham CC. 1984. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38:1358−70

doi: 10.1111/j.1558-5646.1984.tb05657.x
[61]

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−58

doi: 10.1093/bioinformatics/btr330
[62]

Pedersen BS, Quinlan AR. 2018. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34:867−68

doi: 10.1093/bioinformatics/btx699
[63]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9:357−59

doi: 10.1038/nmeth.1923
[64]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323