[1]

Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, et al. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience 13:221−26

doi: 10.1038/s41561-019-0530-4
[2]

Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20:5−15

doi: 10.1890/08-0127.1
[3]

Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. PNAS 101:11001−6

doi: 10.1073/pnas.0403588101
[4]

Hou E, Wen D, Jiang L, Luo X, Kuang Y, et al. 2021. Latitudinal patterns of terrestrial phosphorus limitation over the globe. Ecology Letters 24:1420−31

doi: 10.1111/ele.13761
[5]

Vitousek PM. 1984. Litterfall, nutrient cycling, and nutrient limitation in Tropical forests. Ecology 65:285−98

doi: 10.2307/1939481
[6]

Hedwall PO, Bergh J, Brunet J. 2017. Phosphorus and nitrogen co-limitation of forest ground vegetation under elevated anthropogenic nitrogen deposition. Oecologia 185:317−26

doi: 10.1007/s00442-017-3945-x
[7]

Goswami S, Fisk MC, Vadeboncoeur MA, Garrison-Johnston M, Yanai RD, et al. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99:438−49

doi: 10.1002/ecy.2100
[8]

Gonzales K, Yanai R. 2019. Nitrogen–phosphorous interactions in young northern hardwoods indicate P limitation: foliar concentrations and resorption in a factorial N by P addition experiment. Oecologia 189:829−40

doi: 10.1007/s00442-019-04350-y
[9]

Fleischer K, Dolman AJ, van der Molen MK, Rebel KT, Erisman JW, et al. 2019. Nitrogen deposition maintains a positive effect on terrestrial carbon sequestration in the 21st century despite growing phosphorus limitation at regional scales. Global Biogeochemical Cycles 33:810−24

doi: 10.1029/2018GB005952
[10]

Hodge A. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162:9−24

doi: 10.1111/j.1469-8137.2004.01015.x
[11]

Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology 17:10−9

doi: 10.1046/j.1365-2435.2003.00694.x
[12]

Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G. 2005. Does the gradualness of leaf shedding govern nutrient resorption from senescing leaves in Mediterranean woody plants. Plant and Soil 278:303−13

doi: 10.1007/s11104-005-8770-z
[13]

Huang G, Su Y-g, Mu X-h, Li Y. 2018. Foliar nutrient resorption responses of three life-form plants to water and nitrogen additions in a temperate desert. Plant and Soil 424:479−89

doi: 10.1007/s11104-017-3551-z
[14]

Van Heerwaarden LM, Toet S, Aerts R. 2003. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology 91:1060−70

doi: 10.1046/j.1365-2745.2003.00828.x
[15]

Xia J, Wan S. 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist 179:428−39

doi: 10.1111/j.1469-8137.2008.02488.x
[16]

Kou L, Wang H, Gao W, Chen W, Yang H, et al. 2017. Nitrogen addition regulates tradeoff between root capture and foliar resorption of nitrogen and phosphorus in a subtropical pine plantation. Trees-Structure and Function 31:77−91

doi: 10.1007/s00468-016-1457-7
[17]

Liu G, Xing Y, Wang Q, Wang L, Feng Y, et al. 2021. Long-term nitrogen addition regulates root nutrient capture and leaf nutrient resorption in Larix gmelinii in a boreal forest. European Journal of Forest Research 140:763−76

doi: 10.1007/s10342-021-01364-1
[18]

Zhan X, Yu G, He N, Fang H, Jia B, et al. 2014. Nitrogen deposition and its spatial pattern in main forest ecosystems along North-South Transect of Eastern China. Chinese Geographical Science 24137−46

doi: 10.1007/s11769-013-0650-5
[19]

Dong C, Wang W, Liu H, Xu X, Zeng H. 2019. Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: Evidence from soil extracellular enzyme stoichiometry. Ecological Indicators 101:453−64

doi: 10.1016/j.ecolind.2019.01.046
[20]

Zheng J, She W, Zhang Y, Bai Y, Qin S, Wu B. 2018. Nitrogen enrichment alters nutrient resorption and exacerbates phosphorus limitation in the desert shrub Artemisia ordosica. Ecology and Evolution 8:9998−10007

doi: 10.1002/ece3.4407
[21]

Koerselman W, Meuleman AF. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441−50

doi: 10.2307/2404783
[22]

Ma Y, Zhong Q, Jin B, Lu H, Guo B, et al. 2015. Spatial changes and influencing factors of fine root carbon, nitrogen and phosphorus stoichiometry of plants in China. Chinese Journal of Plant Ecology 39:159−66

[23]

Yuan ZY, Chen HYH, Reich PB. 2011. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus. Nature Communications 2:344

doi: 10.1038/ncomms1346
[24]

Aerts R, Chapin III FS. 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In Advances in ecological research, eds. Fitter AH, Raffaelli DG. 30:viii, 417. US: Academic Press, Elsevier. pp. 1−67. https://doi.org/10.1016/S0065-2504(08)60016-1

[25]

Kobe RK, Lepczyk CA, Iyer M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780−92

doi: 10.1890/04-1830
[26]

Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716−27

doi: 10.2307/2265777
[27]

Han W, Fang J, Reich PB, Ian Woodward F, Wang Z. 2011. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters 14:788−96

doi: 10.1111/j.1461-0248.2011.01641.x
[28]

Tong R, Zhou B, Jiang L, Ge X, Cao Y. 2020. The growth of Chinese fir is limited by nitrogen: Evidences from N:P ratio, N or P variability and NuRE based on a regional investigation. Forest Ecology and Management 460:117905

doi: 10.1016/j.foreco.2020.117905
[29]

Sheng W, Ren S, Yu G, Fang H, Jiang C, et al. 2011. Patterns and driving factors of WUE and NUE in natural forest ecosystems along the North-South Transect of Eastern China. Journal of Geographical Sciences 21:651−65

doi: 10.1007/s11442-011-0870-5
[30]

Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, et al. 2021. Empirical support for the biogeochemical niche hypothesis in forest trees. Nature Ecology and Evolution 5:184−94

doi: 10.1038/s41559-020-01348-1
[31]

Fang Z, Li D, Jiao F, Yao J, Du H. 2019. The latitudinal patterns of leaf and soil C: N: P stoichiometry in the loess plateau of China. Frontiers in Plant Science 10:85

doi: 10.3389/fpls.2019.00085
[32]

Reich PB, Oleksyn J, Tjoelker MG. 1996. Needle respiration and nitrogen concentration in Scots pine populations from a broad latitudinal range: a common garden test with field-grown trees. Functional Ecology 10:768−76

doi: 10.2307/2390512
[33]

Yuan ZY, Chen HYH. 2009. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Global Ecology and Biogeography 18:11−18

doi: 10.1111/j.1466-8238.2008.00425.x
[34]

Ji Y, Zhou P, Peng S, Huang B, Peng S, et al. 2020. A continental study of relationships between leaf N and P stoichiometry and solar radiation including its direct, diffuse, and spectral components. Journal of Geophysical Research: Biogeosciences 125:e2020JG005747

doi: 10.1029/2020JG005747
[35]

Liu J, Deng Y, Wang X, Ni Y, Wang Q, et al. 2018. The concentration of non-structural carbohydrates, N, and P in Quercus variabilis does not decline toward its northernmost distribution range along a 1500 km transect in China. Frontiers in plant science 9:1444

doi: 10.3389/fpls.2018.01444
[36]

Lu N, Sun G, Feng X, Fu B. 2013. Water yield responses to climate change and variability across the North–South Transect of Eastern China (NSTEC). Journal of hydrology 481:96−105

doi: 10.1016/j.jhydrol.2012.12.020
[37]

Wang R, Yu G, He N, Wang Q, Zhao N, et al. 2016. Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China. Journal of Geographical Sciences 26:15−26

doi: 10.1007/s11442-016-1251-x
[38]

Liu X, Liu P, Zhao M, Tan J, Yang B, et al. 2019. Growth Law of Natural Quercus acutissima Secondary Forest. Journal of Northwest Forestry University 34:175−79

[39]

McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, et al. 2015. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist 207:505−18

doi: 10.1111/nph.13363
[40]

Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82:205−20

doi: 10.1890/11-0416.1