[1] |
Williams GJ, Zhang C, Thorson JS. 2007. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nature Chemical Biology 3:657−662 doi: 10.1038/nchembio.2007.28 |
[2] |
Shie JJ, Chen CA, Lin CC, Ku AF, Cheng TJ, et al. 2010. Regioselective synthesis of di-C-glycosylflavones possessing anti-inflammation activities. Organic & Biomolecular Chemistry 8:4451−62 doi: 10.1039/c0ob00011f |
[3] |
Muto J, Naidu NN, Yamasaki K, Pineau N, Breton L, et al. 2011. Exogenous addition of a C-xylopyranoside derivative stimulates keratinocyte dermatan sulfate synthesis and promotes migration. PLoS One 6:e25480 doi: 10.1371/journal.pone.0025480 |
[4] |
Ku SK, Bae JS. 2016. Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo. Canadian Journal of Physiology and Pharmacology 94:287−95 doi: 10.1139/cjpp-2015-0215 |
[5] |
Han Z, Achilonu MC, Kendrekar PS, Joubert E, Ferreira D, et al. 2014. Concise and scalable synthesis of aspalathin, a powerful plasma sugar-lowering natural product. Journal of Natural Products 77:583−88 doi: 10.1021/np4008443 |
[6] |
Galland M, Boutet-Mercey S, Lounifi I, Godin B, Balzergue S, et al. 2014. Compartmentation and dynamics of flavone metabolism in dry and germinated rice seeds. Plant and Cell Physiology 55:1646−59 doi: 10.1093/pcp/pcu095 |
[7] |
Putkaradze N, Teze D, Fredslund F, Welner DH. 2021. Natural product C-glycosyltransferases - a scarcely characterised enzymatic activity with biotechnological potential. Natural Product Reports 38:432−43 doi: 10.1039/D0NP00040J |
[8] |
Zhang M, Li F, Li K, Wang Z, Wang Y, et al. 2020. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra. Journal of the American Chemical Society 142:3506−12 doi: 10.1021/jacs.9b12211 |
[9] |
He J, Zhao P, Hu Z, Liu S, Kuang Y, et al. 2019. Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis. Angewandte Chemie 58:11513−20 doi: 10.1002/anie.201905505 |
[10] |
Chen D, Chen R, Wang R, Li J, Xie K, et al. 2015. Probing the catalytic promiscuity of a regio- and stereospecific C-glycosyltransferase from Mangifera indica. Angewandte Chemie 54:12678−82 doi: 10.1002/anie.201506505 |
[11] |
Nagatomo Y, Usui S, Ito T, Kato A, Shimosaka M, Taguchi G. 2014. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. The Plant Journal 80:437−48 doi: 10.1111/tpj.12645 |
[12] |
Wang Z, Gao H, Wang S, Zhang M, Chen K, et al. 2020. Dissection of the general two-step di-C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants. PNAS 117:30816−23 doi: 10.1073/pnas.2012745117 |
[13] |
Yoshida A, Taoka KI, Hosaka A, Tanaka K, Kobayashi H, et al. 2021. Characterization of frond and flower development and identification of FT and FD genes from duckweed Lemna aequinoctialis Nd. Frontiers in Plant Science 12:697206 doi: 10.3389/fpls.2021.697206 |
[14] |
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, et al. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42:W252−W258 doi: 10.1093/nar/gku340 |
[15] |
Liu S, Zhang M, Bao Y, Chen K, Xu L, et al. 2022. Characterization of a highly selective 2''-O-galactosyltransferase from Trollius chinensis and structure-guided engineering for improving UDP-glucose selectivity. Organic Letters 23:9020−9024 doi: 10.1021/acs.orglett.1c02581 |
[16] |
Wang Z, Zhou J, Han B, Hasan A, Zhang Y, et al. 2022. GuRhaGT, a highly specific saponin 2''-O-rhamnosyltransferase from Glycyrrhiza uralensis. Chemical Communications 58:5277−80 doi: 10.1039/d1cc07021e |
[17] |
Chen D, Fan S, Chen R, Xie K, Yin S, et al. 2018. Probing and engineering key residues for bis-C-glycosylation and promiscuity of a C-glycosyltransferase. ACS Catalysis 8:4917−27 doi: 10.1021/acscatal.8b00376 |
[18] |
Hirade Y, Kotoku N, Terasaka K, Saijo-Hamano Y, Fukumoto A, Mizukami H. 2015. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max). FEBS Letters 589:1778−86 doi: 10.1016/j.febslet.2015.05.010 |
[19] |
Hao B, Caulfield JC, Hamilton ML, Pickett JA, Midega CAO, et al. 2016. Biosynthesis of natural and novel C-glycosylflavones utilising recombinant Oryza sativa C-glycosyltransferase (OsCGT) and Desmodium incanum root proteins. Phytochemistry 125:73−87 doi: 10.1016/j.phytochem.2016.02.013 |
[20] |
Falcone Ferreyra ML, Rodriguez E, Casas MI, Labadie G, Grotewold E, et al. 2013. Identification of a bifunctional maize C- and O-glucosyltransferase. Journal of Biological Chemistry 288:31678−88 doi: 10.1074/jbc.M113.510040 |
[21] |
Wang X, Li C, Zhou C, Li J, Zhang Y. 2017. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata. The Plant Journal 90:535−46 doi: 10.1111/tpj.13510 |
[22] |
Sasaki N, Nishizaki Y, Yamada E, Tatsuzawa F, Nakatsuka T, et al. 2015. Identification of the glucosyltransferase that mediates direct flavone C-glucosylation in Gentiana triflora. FEBS Letters 589:182−87 doi: 10.1016/j.febslet.2014.11.045 |
[23] |
Ito T, Fujimoto S, Suito F, Shimosaka M, Taguchi G. 2017. C-glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants. The Plant Journal 91:187−98 doi: 10.1111/tpj.13555 |