[1] |
Black-Samuelsson S, Eriksson A, Bergqvist J. 2020. The second report on the state of the world´s forest genetic resources: Sweden. Report. Skogsstyrelsen, Sweden. www.skogsstyrelsen.se/globalassets/om-oss/rapporter/rapporter-2021202020192018/rapport-2020-3-forest-genetic-resources-in-sweden---2nd-report.pdf |
[2] |
Funda T, El-Kassaby YA. 2012. Seed orchard genetics. CAB Reviews 7:1−23 doi: 10.1079/PAVSNNR20127013 |
[3] |
Ruotsalainen S. 2014. Increased forest production through forest tree breeding. Scandinavian Journal of Forest Research 29:333−44 doi: 10.1080/02827581.2014.926100 |
[4] |
Almqvist C, Wennström U, Karlsson B. 2010. Redogörelse. Förädlat skogsodlingsmaterial 2010−2050. Skogforsk. www.skogforsk.se/contentassets/c7119b55fadf4b7b9d1f8ea6fb6fb7fe/redogorelse-3-2010-low.pdf |
[5] |
Kang KS. 2001. Genetic gain and gene diversity of seed orchard crops. Doctoral thesis. Swedish University of Agricultural Sciences, Sweden. |
[6] |
Lindgren D, Prescher F. 2005. Optimal clone number for seed orchards with tested clones. Silvae Genetica 54:80−92 doi: 10.1515/sg-2005-0013 |
[7] |
Funda T, Liewlaksaneeyanawin C, Fundova I, Lai BSK, Walsh C, et al. 2011. Congruence between parental reproductive investment and success determined by DNA-based pedigree reconstruction in conifer seed orchards. Canadian Journal of Forest Research 41:380−89 doi: 10.1139/X10-190 |
[8] |
Torimaru T, Wennström U, Lindgren D, Wang XR. 2012. Effects of male fecundity, interindividual distance and anisotropic pollen dispersal on mating success in a Scots pine (Pinus sylvestris) seed orchard. Heredity 108:312−21 doi: 10.1038/hdy.2011.76 |
[9] |
Song J, Ratcliffe B, Kess T, Lai BS, Korecký J, et al. 2018. Temporal quantification of mating system parameters in a coastal Douglas-fir seed orchard under manipulated pollination environment. Scientific Reports 8:11593 doi: 10.1038/s41598-018-30041-4 |
[10] |
Nikkanen T, Ruotsalainen S. 2000. Variation in flowering abundance and its impact on the genetic diversity of the seed crop in a Norway spruce seed orchard. Silva Fennica 34:205−22 doi: 10.14214/sf.626 |
[11] |
Rosvall O. 2011. Review of the Swedish tree breeding program. Report. 9197764965, SkogForsk, Sweden |
[12] |
Lindgren D, Matheson AC. 1986. An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genetica 35:173−77 |
[13] |
Kang KS, Lindgren D, Mullin TJ. 2001. Prediction of genetic gain and gene diversity in seed orchard crops under alternative management strategies. Theoretical and Applied Genetics 103:1099−107 doi: 10.1007/s001220100700 |
[14] |
Stoehr M, Webber J. 2018. Orchard pollen contamination: joint estimation of realized levels on current growth and future effects on volume and value at rotation in coastal Douglas-fir in British Columbia. Scandinavian Journal of Forest Research 33:1−5 doi: 10.1080/02827581.2017.1316420 |
[15] |
Torimaru T, Wang XR, Fries A, Andersson B, Lindgren D. 2009. Evaluation of pollen contamination in an advanced Scots pine seed orchard. Silvae Genetica 58:262−69 doi: 10.1515/sg-2009-0033 |
[16] |
Funda T, Wennström U, Almqvist C, Torimaru T, Andersson Gull B, et al. 2015. Low rates of pollen contamination in a Scots pine seed orchard in Sweden: the exception or the norm. Scandinavian Journal of Forest Research 30:573−86 doi: 10.1080/02827581.2015.1036306 |
[17] |
Funda T, Wennström U, Almqvist C, Andersson Gull B, Wang XR. 2016. Mating dynamics of Scots pine in isolation tents. Tree Genetics & Genomes 12:112 doi: 10.1007/s11295-016-1074-z |
[18] |
Paule L, Lindgren D, Yazdani R. 1993. Allozyme frequencies, outcrossing rate and pollen contamination in Picea abies seed orchards. Scandinavian Journal of Forest Research 8:8−17 doi: 10.1080/02827589309382751 |
[19] |
Pakkanen A, Nikkanen T, Pulkkinen P. 2000. Annual variation in pollen contamination and outcrossing in a Picea abies seed orchard. Scandinavian Journal of Forest Research 15:399−404 doi: 10.1080/028275800750172574 |
[20] |
Sønstebø JH, Tollefsrud MM, Myking T, Steffenrem A, Nilsen AE, et al. 2018. Genetic diversity of Norway spruce (Picea abies (L.) Karst.) seed orchard crops: Effects of number of parents, seed year, and pollen contamination. Forest Ecology and Management 411:132−41 doi: 10.1016/j.foreco.2018.01.009 |
[21] |
Wang XR, Torimaru T, Lindgren D, Fries A. 2010. Marker-based parentage analysis facilitates low input 'breeding without breeding' strategies for forest trees. Tree Genetics & Genomes 6:227−35 doi: 10.1007/s11295-009-0243-8 |
[22] |
Pan J, Wang B, Pei Z, Zhao W, Gao J, et al. 2015. Optimization of the genotyping-by-sequencing strategy for population genomic analysis in conifers. Molecular Ecology Resources 15:711−22 doi: 10.1111/1755-0998.12342 |
[23] |
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20 doi: 10.1093/bioinformatics/btu170 |
[24] |
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. 2011. Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes|Genomes|Genetics 1:171 doi: 10.1534/g3.111.000240 |
[25] |
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, et al. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology 15:R59 doi: 10.1186/gb-2014-15-3-r59 |
[26] |
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579−84 doi: 10.1038/nature12211 |
[27] |
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv In Press doi: 10.6084/M9.FIGSHARE.963153.V1 |
[28] |
Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987−93 doi: 10.1093/bioinformatics/btr509 |
[29] |
Goudet J, Jombart T. 2020. hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.5-7. https://CRAN.R-project.org/package=hierfstat |
[30] |
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team. 2020. nlme: linear and nonlinear mixed effects models. R package version 3.1-149. https://CRAN.R-project.org/package=nlme |
[31] |
Luu K, Bazin E, Blum MGB. 2017. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources 17:67−77 doi: 10.1111/1755-0998.12592 |
[32] |
Ritland K. 1996. Estimators for pairwise relatedness and individual inbreeding coefficients. Genetical Research 67:175−85 doi: 10.1017/S0016672300033620 |
[33] |
Pew J, Muir PH, Wang J, Frasier TR. 2015. related: an R package for analysing pairwise relatedness from codominant molecular markers. Molecular Ecology Resources 15:557−61 doi: 10.1111/1755-0998.12323 |
[34] |
Hall D, Zhao W, Wennström U, Andersson Gull B, Wang XR. 2020. Parentage and relatedness reconstruction in Pinus sylvestris using genotyping-by-sequencing. Heredity 124:633−46 doi: 10.1038/s41437-020-0302-3 |
[35] |
Dodds KG, McEwan JC, Brauning R, Anderson RM, van Stijn TC, et al. 2015. Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genomics 16:1047 doi: 10.1186/s12864-015-2252-3 |
[36] |
Simpson EH. 1949. Measurement of diversity. Nature 163:688 doi: 10.1038/163688a0 |
[37] |
Nielsen R, Tarpy DR, Reeve HK. 2003. Estimating effective paternity number in social insects and the effective number of alleles in a population. Molecular Ecology 12:3157−64 doi: 10.1046/j.1365-294X.2003.01994.x |
[38] |
Nowakowska JA, Zachara T, Konecka A. 2014. Genetic variability of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) natural regeneration compared with their maternal stands. Forest Research Papers 75:47−54 doi: 10.2478/frp-2014-0005 |
[39] |
Verbylaitė R, Pliūra A, Lygis V, Suchockas V, Jankauskienė J, et al. 2017. Genetic diversity and its spatial distribution in self-regenerating Norway spruce and Scots pine stands. Forests 8:470 doi: 10.3390/f8120470 |
[40] |
Hall D, Olsson J, Zhao W, Kroon J, Wennström U, et al. 2021. Divergent patterns between phenotypic and genetic variation in Scots pine. Plant Communications 2:100139 doi: 10.1016/j.xplc.2020.100139 |
[41] |
Lindgren D, Mullin TJ. 1998. Relatedness and status number in seed orchard crops. Canadian Journal of Forest Research 28:276−83 doi: 10.1139/x97-217 |
[42] |
Kärkkäinen K, Koski V, Savolainen O. 1996. Geographical variation in the inbreeding depression of Scots pine. Evolution 50:111−19 doi: 10.1111/j.1558-5646.1996.tb04477.x |
[43] |
García Gil MR, Floran V, Östlund L, Mullin TJ, Andersson Gull B. 2015. Genetic diversity and inbreeding in natural and managed populations of Scots pine. Tree Genet. Genomes 11:28 doi: 10.1007/s11295-015-0850-5 |
[44] |
Charlesworth D, Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annual Review of Ecology and Systematics 18:237−68 doi: 10.1146/annurev.es.18.110187.001321 |
[45] |
Mullin TJ, Persson T, Abrahamsson S, Andersson Gull B. 2019. Effects of inbreeding depression on seed production in Scots pine (Pinus sylvestris). anadian Journal of Forest Research 49:854−60 doi: 10.1139/cjfr-2019-0049 |
[46] |
Chen Z, Zan Y, Milesi PR, Zhou L, Chen J, et al. 2021. Leveraging breeding programs and genomic data in Norway spruce (Picea abies L. Karst) for GWAS analysis. Genome Biology 22:179 doi: 10.1186/s13059-021-02392-1 |
[47] |
Milesi P, Berlin M, Chen J, Orsucci M, Li L, et al. 2019. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evolutionary Applications 12:1946−59 doi: 10.1111/eva.12855 |
[48] |
Funda T, Lstibůrek M, Lachout P, Klápště J, El-Kassaby YA. 2009. Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genetics & Genomes 5:583−93 doi: 10.1007/s11295-009-0211-3 |
[49] |
Lstibůrek M, Stejskal J, Misevicius A, Korecký J, El-Kassaby YA. 2015. Expansion of the minimum-inbreeding seed orchard design to operational scale. Tree Genetics & Genomes 11:12 doi: 10.1007/s11295-015-0842-5 |
[50] |
Dering M, Misiorny A, Chałupka W. 2014. Inter-year variation in selfing, background pollination, and paternal contribution in a Norway spruce clonal seed orchard. Canadian Journal of Forest Research 44:760−67 doi: 10.1139/cjfr-2014-0061 |
[51] |
Di-Giovanni F, Kevan PG. 1991. Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal of Forest Research 21:1155−70 doi: 10.1139/x91-163 |
[52] |
Nikkanen T. 2001. Reproductive phenology in a Norway spruce seed orchard. Silva Fennica 35:602 doi: 10.14214/sf.602 |
[53] |
Prescher F, Lindgren D, Karlsson B. 2008. Genetic thinning of clonal seed orchards using linear deployment may improve both gain and diversity. Forest Ecology and Management 254:188−92 doi: 10.1016/j.foreco.2007.08.014 |
[54] |
Moriguchi Y, Prescher F, Lindgren D. 2008. Optimum lifetime for Swedish Picea abies seed orchards. New Forests 35:147−57 doi: 10.1007/s11056-007-9068-1 |
[55] |
El-Kassaby YA, Prescher F, Lindgren D. 2007. Advanced generation seed orchards' turnover as affected by breeding advance, time to sexual maturity and costs, with special reference to Pinus sylvestris in Sweden. Scandinavian Journal of Forest Research 22:88−98 doi: 10.1080/02827580701217752 |