[1] |
Rohde A, Bhalerao RP. 2007. Plant dormancy in the perennial context. Trends in Plant Science 12:217−23 doi: 10.1016/j.tplants.2007.03.012 |
[2] |
Wu J, Wu W, Liang J, Jin Y, Gazzarrini S, et al. 2019. GhTCP19 transcription factor regulates corm dormancy release by repressing GhNCED expression in Gladiolus. Plant and Cell Physiology 60:52−62 doi: 10.1093/pcp/pcy186 |
[3] |
Shim D, Ko JH, Kim WC, Wang QJ, Keathley DE, Han KH. 2014. A molecular framework for seasonal growth-dormancy regulation in perennial plants. Horticulture Research 1:14059 doi: 10.1038/hortres.2014.59 |
[4] |
Gubler F, Millar AA, Jacobsen JV. 2005. Dormancy release, ABA and pre-harvest sprouting. Current Opinion in Plant Biology 8:183−87 doi: 10.1016/j.pbi.2005.01.011 |
[5] |
Wu J, Seng S, Sui J, Vonapartis E, Luo X, et al. 2015. Gladiolus hybridus ABSCISIC ACID INSENSITIVE 5 (GhABI5) is an important transcription factor in ABA signaling that can enhance Gladiolus corm dormancy and Arabidopsis seed dormancy. Frontiers in Plant Science 6:960 doi: 10.3389/fpls.2015.00960 |
[6] |
Beauvieux R, Wenden B, Dirlewanger E. 2018. Bud dormancy in perennial fruit tree species: A pivotal role for oxidative cues. Frontiers in Plant Science 9:657 doi: 10.3389/fpls.2018.00657 |
[7] |
Liu JY, Sherif SM. 2019. Hormonal orchestration of bud dormancy cycle in deciduous woody perennials. Frontiers in Plant Science 10:1136 doi: 10.3389/fpls.2019.01136 |
[8] |
Martín-Fontecha ES, Tarancón C, Cubas P. 2018. To grow or not to grow, a power-saving program induced in dormant buds. Current Opinion in Plant Biology 41:102−9 doi: 10.1016/j.pbi.2017.10.001 |
[9] |
Lloret A, Badenes ML, Ríos G. 2018. Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. Frontiers in Plant Science 9:1368 doi: 10.3389/fpls.2018.01368 |
[10] |
Rohde A, Bastien C, Boerjan W, Thomas S. 2011. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiology 31:472−82 doi: 10.1093/treephys/tpr038 |
[11] |
Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015. COLD1 confers chilling tolerance in rice. Cell 160:1209−21 doi: 10.1016/j.cell.2015.01.046 |
[12] |
MacGregor DR, Zhang N, Iwasaki M, Chen M, Dave A, et al. 2019. ICE1 and ZOU determine the depth of primary seed dormancy in Arabidopsis independently of their role in endosperm development. The Plant Journal 98:277−90 doi: 10.1111/tpj.14211 |
[13] |
Miotto YE, Tessele C, Czermainski ABC, Porto DD, da Silveira Falavigna V, et al. 2019. Spring is coming: genetic analyses of the bud break date locus reveal candidate genes from the cold perception pathway to dormancy release in apple (Malus × domestica Borkh.). Frontiers in Plant Science 10:33 doi: 10.3389/fpls.2019.00033 |
[14] |
Takemura Y, Kuroki K, Shida Y, Araki S, Takeuchi Y, et al. 2015. Comparative transcriptome analysis of the less-dormant Taiwanese pear and the dormant Japanese pear during winter season. Plos One 10:e0139595 doi: 10.1371/journal.pone.0139595 |
[15] |
Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. 2008. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9:536 doi: 10.1186/1471-2164-9-536 |
[16] |
Fan X, Yang Y, Li M, Fu L, Zang Y, et al. 2020. Transcriptome and targeted metabolome reveal the regulation network of Lilium davidii var. unicolor during dormancy release. Preprint doi: 10.21203/rs.3.rs-126184/v1 |
[17] |
Wu J, Jin Y, Liu C, Vonapartis E, Liang J, et al. 2019. GhNAC83 inhibits corm dormancy release by regulating ABA signaling and cytokinin biosynthesis in Gladiolus hybridus. Journal of Experimental Botany 70:1221−37 doi: 10.1093/jxb/ery428 |
[18] |
Tang K, Zhao L, Ren Y, Yang S, Zhu J, et al. 2020. The transcription factor ICE1 functions in cold stress response by binding to the promoters of CBF and COR genes. Journal of Integrative Plant Biology 62:258−63 doi: 10.1111/jipb.12918 |
[19] |
Li J, Yan X, Yang Q, Ma Y, Yang B, et al. 2019. PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. Plant Molecular Biology 99:575−86 doi: 10.1007/s11103-019-00837-7 |
[20] |
Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, et al. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes 4:495−507 doi: 10.1007/s11295-007-0126-9 |
[21] |
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21:397−402 doi: 10.1101/gad.1518407 |
[22] |
Takahashi H, Nishihara M, Yoshida C, Itoh K. 2022. Gentian FLOWERING LOCUS T orthologs regulate phase transitions: floral induction and endodormancy release. Plant Physiology 188:1887−99 doi: 10.1093/plphys/kiac007 |
[23] |
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43 doi: 10.1126/science.1126038 |
[24] |
Pan W, Liang J, Sui J, Li J, Liu C, et al. 2021. ABA and bud dormancy in perennials: current knowledge and future perspective. Genes 12:1635 doi: 10.3390/genes12101635 |
[25] |
Jung JH, Domijan M, Klose C, Biswas S, Ezer D, et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:886−89 doi: 10.1126/science.aaf6005 |
[26] |
Qiu Y, Li M, Kim RJA, Moore CM, Chen M. 2019. Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nature Communications 10:140 doi: 10.1038/s41467-018-08059-z |
[27] |
Le Nard M. 1993. The physiology of flower bulbs: A comprehensive treatise on the physiology and utilization of ornamental flowering bulbous and tuberous plants. Amsterdam: Elsevier |
[28] |
Pedmale UV, Huang SSC, Zander M, Cole BJ, Hetzel J, et al. 2016. Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233−45 doi: 10.1016/j.cell.2015.12.018 |
[29] |
Lu X, Zhou C, Xu P, Luo Q, Lian H, et al. 2015. Red-light-dependent interaction of phyB with SPA1 promotes COP1-SPA1 dissociation and photomorphogenic development in Arabidopsis. Molecular Plant 8:467−78 doi: 10.1016/j.molp.2014.11.025 |
[30] |
Paradiso R, Proietti S. 2022. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation 41:742−80 doi: 10.1007/s00344-021-10337-y |
[31] |
Kami C, Lorrain S, Hornitschek P, Fankhauser C. 2010. Light-regulated plant growth and development. In Current Topics in Developmental Biology, Plant Development, ed. Timmermans MCP. 91: 455. USA: Academic Press, Elesvier. pp. 29−66 https://doi.org/10.1016/S0070-2153(10)91002-8html |
[32] |
Legris M, Ince YÇ, Fankhauser C. 2019. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nature Communications 10:5219 doi: 10.1038/s41467-019-13045-0 |
[33] |
Ding J, Zhang B, Li Y, André D, Nilsson O. 2021. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. The New Phytologist 232:2339−52 doi: 10.1111/nph.17350 |
[34] |
de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008. A molecular framework for light and gibberellin control of cell elongation. Nature 451:480−84 doi: 10.1038/nature06520 |
[35] |
Yang L, Liu S, Lin R. 2020. The role of light in regulating seed dormancy and germination. Journal of Integrative Plant Biology 62:1310−26 doi: 10.1111/jipb.13001 |
[36] |
Gubler F, Hughes T, Waterhouse P, Jacobsen J. 2008. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology 147:886−96 doi: 10.1104/pp.107.115469 |
[37] |
Goggin DE, Steadman KJ, Powles SB. 2008. Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds. The New Phytologist 180:81−89 doi: 10.1111/j.1469-8137.2008.02570.x |
[38] |
Gachango E, Shibairo S, Kabira J, Chemining'wa G, Demo P. 2008. Effects of light intensity on quality of potato seed tubers. African Journal of Agricultural Research 3:732−39 |
[39] |
Langens-Gerrits ML, Nashimoto S, Croes A, De Klerk G. 2001. Development of dormancy in different lily genotypes regenerated in vitro. Plant Growth Regulation 34:215−22 doi: 10.1023/A:1013318810119 |
[40] |
Ben-Hod G, Kigel J, Steinitz B. 1988. Dormancy and flowering in Anemone coronaria L. as affected by photoperiod and temperature. Annals of Botany 61:623−33 doi: 10.1093/oxfordjournals.aob.a087596 |
[41] |
Masuda J, Urakawa T, Ozaki Y, Okubo H. 2006. Short photoperiod induces dormancy in Lotus (Nelumbo nucifera). Annals of Botany 97:39−45 doi: 10.1093/aob/mcj008 |
[42] |
Wilkins HF. 2005. Lilium longiflorum Thunb., a classic model to study temperature and photoperiod interactions on dormancy, flower induction, leaf unfolding and flower development. Proc. IX International Symposium on Flower Bulbs, ISHS Acta Horticulturae 673, 2005. Niigata, Japan: ISHS Acta Horticulturae. pp. 293−96 https://doi.org/10.17660/ActaHortic.2005.673.36html |
[43] |
Rudnicki RM, Nowak J, Saniewski M. 1976. The effect of gibberellic acid on sprouting and flowering of some tulip cultivars. Scientia Horticulturae 4:387−97 doi: 10.1016/0304-4238(76)90107-2 |
[44] |
Situma MN, Mwangi M, Mulwa RMS. 2015. Effects of benzyl adenine and gibberellic acid pre-treatments on dormancy release, flowering time and multiplication of oriental lily (Lilium longiflorum) bulbs. Journal of Applied Horticulture 17:26−30 doi: 10.37855/jah.2015.v17i01.06 |
[45] |
Marković M, Trifunović Momčilov M, Uzelac B, Jevremović S, Subotić A. 2021. Bulb dormancy in vitro—Fritillaria meleagris: initiation, release and physiological parameters. Plants 10:902 doi: 10.3390/plants10050902 |
[46] |
Edrisi B, Mirzaei S. 2017. An investigation into the effect of gibberellic acid and storage temperature on vegetative and reproductive characteristics of tuberose (Polianthes tuberosa). Journal of Ornamental Plants 7:137−46 |
[47] |
Busov VB. 2019. Plant development: dual roles of poplar SVL in vegetative bud dormancy. Current Biology 29:R68−R70 doi: 10.1016/j.cub.2018.11.061 |
[48] |
Marković M, Trifunović Momčilov M, Uzelac B, Cingel A, Milošević S, et al. 2020. Breaking the dormancy of snake's head fritillary (Fritillaria meleagris L.) in vitro bulbs−Part 1: effect of GA3, GA inhibitors and temperature on fresh weight, sprouting and sugar content. Plants 9:1449 doi: 10.3390/plants9111449 |
[49] |
Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, et al. 2011. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1, 3-β-glucanases to reopen signal conduits and release dormancy in Populus. The Plant Cell 23:130−46 doi: 10.1105/tpc.110.081307 |
[50] |
Zhang Y, Yuan Y, Liu Z, Zhang T, Li F, et al. 2021. GA3 is superior to GA4 in promoting bud endodormancy release in tree peony (Paeonia suffruticosa) and their potential working mechanism. BMC Plant Biology 21:323 doi: 10.1186/s12870-021-03106-2 |
[51] |
Lv L, Huo X, Wen L, Gao Z, Khalil-Ur-Rehman M. 2018. Isolation and role of PmRGL2 in GA-mediated floral bud dormancy release in Japanese apricot (Prunus mume Siebold et Zucc.). Frontiers in Plant Science 9:27 doi: 10.3389/fpls.2018.00027 |
[52] |
Subbaraj AK, Funnell KA, Woolley DJ. 2010. Dormancy and flowering are regulated by the reciprocal interaction between cytokinin and gibberellin in Zantedeschia. Journal of Plant Growth Regulation 29:487−99 doi: 10.1007/s00344-010-9160-1 |
[53] |
Letham DS, Smith NG, Willcocks DA. 2003. Cytokinin metabolism in Narcissus bulbs: chilling promotes acetylation of zeatin riboside. Functional Plant Biology 30:525−32 doi: 10.1071/FP02097 |
[54] |
Bromley JR, Warnes BJ, Newell CA, Thomson JCP, James CM, et al. 2014. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. The Biochemical Journal 458:225−37 doi: 10.1042/BJ20130792 |
[55] |
Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S. 2011. Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiology 155:776−96 doi: 10.1104/pp.110.168252 |
[56] |
Ormenese S, Bernier G, Périlleux C. 2006. Cytokinin application to the shoot apical meristem of Sinapis alba enhances secondary plasmodesmata formation. Planta 224:1481−4 doi: 10.1007/s00425-006-0317-x |
[57] |
Horner W, Brunkard JO. 2021. Cytokinins stimulate plasmodesmatal transport in leaves. Frontiers in Plant Science 12:674128 doi: 10.3389/fpls.2021.674128 |
[58] |
Alamar MC, Anastasiadi M, Lopez-Cobollo R, Bennett MH, Thompson AJ, et al. 2020. Transcriptome and phytohormone changes associated with ethylene-induced onion bulb dormancy. Postharvest Biology and Technology 168:111267 doi: 10.1016/j.postharvbio.2020.111267 |
[59] |
Keren-Paz V, Borochov A. 1984. Involvement of ethylene in liatris corm dormancy. In Ethylene: Biochemical, Physiological and Applied Aspects, ed. Fuchs Y, Chalutz E. Dordrecht: Springer Netherlands. pp. 163−64 https://doi.org/10.1007/978-94-009-6178-4_24 |
[60] |
Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, et al. 2006. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. The Plant Journal 46:628−40 doi: 10.1111/j.1365-313X.2006.02722.x |
[61] |
Sumitomo K, Narumi T, Satoh S, Hisamatsu T. 2008. Involvement of the ethylene response pathway in dormancy induction in chrysanthemum. Journal of Experimental Botany 59:4075−82 doi: 10.1093/jxb/ern247 |
[62] |
Ginzburg C. 1974. Studies on the role of ethylene in gladiolus cormel germination. Plant Science Letters 2:133−38 doi: 10.1016/0304-4211(74)90011-X |
[63] |
Uyemura S, Imanishi H. 1984. Effects of duration of exposure to ethylene on dormancy release in freesia corms. Scientia Horticulturae 22:383−90 doi: 10.1016/S0304-4238(84)80010-2 |
[64] |
Imanishi H, Fortanier EJ. 1983. Effects of exposing freesia corms to ethylene or to smoke on dormancy-breaking and flowering. Scientia Horticulturae 18:381−89 doi: 10.1016/0304-4238(83)90019-5 |
[65] |
Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, et al. 2009. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology 149:863−73 doi: 10.1104/pp.108.131516 |
[66] |
Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 2004. A compound from smoke that promotes seed germination. Science 305:977 doi: 10.1126/science.1099944 |
[67] |
Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM. 2012. Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology 63:107−30 doi: 10.1146/annurev-arplant-042811-105545 |
[68] |
Wang L, Xu Q, Yu H, Ma H, Li X, et al. 2020. Strigolactone and karrikin signaling pathways elicit ubiquitination and proteolysis of SMXL2 to regulate hypocotyl elongation in Arabidopsis. The Plant Cell 32:2251−70 doi: 10.1105/tpc.20.00140 |
[69] |
Wang L, Waters MT, Smith SM. 2018. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. The New Phytologist 219:605−18 doi: 10.1111/nph.15192 |
[70] |
Sami A, Rehman S, Tanvir MA, Zhou X, Zhu Z, et al. 2020. Assessment of the germination potential of Brassica oleracea seeds treated with karrikin 1 and cyanide, which modify the ethylene biosynthetic pathway. Journal of Plant Growth Regulation 40:1257−69 doi: 10.1007/s00344-020-10186-1 |
[71] |
Chandel NS. 2021. Glycolysis. Cold Spring Harbor Perspectives in Biology 13:a040535 doi: 10.1101/cshperspect.a040535 |
[72] |
Amir J, Kahn V, Unterman M. 1977. Respiration, ATP level, and sugar accumulation in potato tubers during storage at 4°. Phytochemistry 16:1495−98 doi: 10.1016/0031-9422(77)84008-9 |
[73] |
Chrungoo NK. 1992. Concepts of dormancy regulation in vegetative plant propagules: A review. Environmental and Experimental Botany 32:309−18 doi: 10.1016/0098-8472(92)90043-2 |
[74] |
Argüello JA, de Bottini GA, Luna R, Bottini R. 1986. Dormancy in Garlic (Allium sativum L.) cv. Rosado Paraguayo II. The onset of the process during plant ontogeny. Plant Cell Physiol 27:553−57 doi: 10.1093/OXFORDJOURNALS.PCP.A077132 |
[75] |
Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. 2019. The proof is in the bulb: glycerol influences key stages of lily development. The Plant Journal 97:321−40 doi: 10.1111/tpj.14122 |
[76] |
Kamenetsky R, Zemah H, Ranwala AP, Vergeldt F, Ranwala NK, et al. 2003. Water status and carbohydrate pools in tulip bulbs during dormancy release. New Phytologist 158:109−18 doi: 10.1046/j.1469-8137.2003.00719.x |
[77] |
Han H, Yi M. 2012. MRI can reveal metabolic changes in lily bulbs in vivo during dormancy release. Science China Life Sciences 55:1002−6 doi: 10.1007/s11427-012-4394-8 |
[78] |
Yang C, Li Q, Jiang X, Fan Y, Gao J, et al. 2016. Dynamic changes in α- and β-amylase activities and gene expression in bulbs of the Oriental hybrid lily 'Siberia' during dormancy release. The Journal of Horticultural Science and Biotechnology 90:753−59 doi: 10.1080/14620316.2015.11668742 |
[79] |
Sonnewald S, Sonnewald U. 2014. Regulation of potato tuber sprouting. Planta 239:27−38 doi: 10.1007/s00425-013-1968-z |
[80] |
Chen Q, Zhang J, Li G. 2022. Dynamic epigenetic modifications in plant sugar signal transduction. Trends in Plant Science 27:379−90 doi: 10.1016/j.tplants.2021.10.009 |
[81] |
Debast S, Nunes-Nesi A, Hajirezaei MR, Hofmann J, Sonnewald U, et al. 2011. Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiology 156:1754−71 doi: 10.1104/pp.111.179903 |
[82] |
Ríos G, Leida C, Conejero A, Badenes ML. 2014. Epigenetic regulation of bud dormancy events in perennial plants. Frontiers in Plant Science 5:247 doi: 10.3389/fpls.2014.00247 |
[83] |
Li W, Yong Y, Zhang Y, Lyu Y. 2019. Transcriptional Regulatory Network of GA Floral Induction Pathway in LA Hybrid Lily. International Journal of Molecular Sciences 20:2694 doi: 10.3390/ijms20112694 |
[84] |
Luján-Soto E, Dinkova TD. 2021. Time to Wake Up: Epigenetic and Small-RNA-Mediated Regulation during Seed Germination. Plants 10:236 doi: 10.3390/plants10020236 |
[85] |
Saito T, Bai S, Imai T, Ito A, Nakajima I, et al. 2015. Histone modification and signalling cascade of thedormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant, Cell & Environment 38:1157−66 doi: 10.1111/pce.12469 |
[86] |
Leida C, Conesa A, Llácer G, Badenes ML, Ríos G. 2012. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. The New Phytologist 193:67−80 doi: 10.1111/j.1469-8137.2011.03863.x |
[87] |
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, et al. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications 12:1123 doi: 10.1038/s41467-021-21449-0 |
[88] |
David Law R, Suttle JC. 2004. Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiologia Plantarum 120:642−49 doi: 10.1111/j.0031-9317.2004.0273.x |
[89] |
Iwasaki M, Penfield S, Lopez-Molina L. 2022. Parental and environmental control of seed dormancy in Arabidopsis thaliana. Annual Review of Plant Biology 73:355−78 doi: 10.1146/annurev-arplant-102820-090750 |
[90] |
Zhou Y, Wang W, Yang L, Su X, He M. 2021. Identification and expression analysis of microRNAs in response to dormancy release during cold storage of Lilium pumilum bulbs. Journal of Plant Growth Regulation 40:388−404 doi: 10.1007/s00344-020-10108-1 |
[91] |
Guyomarc'h S, Bertrand C, Delarue M, Zhou D. 2005. Regulation of meristem activity by chromatin remodelling. Trends in Plant Science 10:332−38 doi: 10.1016/j.tplants.2005.05.003 |
[92] |
Genger RK, Peacock JW, Dennis ES, Finnegan JE. 2003. Opposing effects of reduced DNA methylation on flowering time in Arabidopsis thaliana. Planta 216:461−66 doi: 10.1007/s00425-002-0855-9 |
[93] |
Yang Z, Qian S, Scheid RN, Lu L, Chen X, et al. 2018. EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nature Genetics 50:1247−53 doi: 10.1038/s41588-018-0187-8 |
[94] |
Cao Y, Dai Y, Cui S, Ma L. 2008. Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. The Plant Cell 20:2586−602 doi: 10.1105/tpc.108.062760 |
[95] |
Bu Z, Yu Y, Li Z, Liu Y, Jiang W, et al. 2014. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression. PLoS Genetics 10:e1004617 doi: 10.1371/journal.pgen.1004617 |
[96] |
Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B. 2009. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. PNAS 106:8386−91 doi: 10.1073/pnas.0903566106 |
[97] |
Wu J, Ichihashi Y, Suzuki T, Shibata A, Shirasu K, et al. 2019. Abscisic acid-dependent histone demethylation during postgermination growth arrest in Arabidopsis. Plant, Cell & Environment 42:2198−214 doi: 10.1111/pce.13547 |
[98] |
Willmann MR, Poethig RS. 2007. Conservation and evolution of miRNA regulatory programs in plant development. Current Opinion in Plant Biology 10:503−11 doi: 10.1016/j.pbi.2007.07.004 |
[99] |
Rubio-Somoza I, Weigel D. 2011. MicroRNA networks and developmental plasticity in plants. Trends in Plant Science 16:258−64 doi: 10.1016/j.tplants.2011.03.001 |
[100] |
Megha S, Basu U, Kav NNV. 2018. Regulation of low temperature stress in plants by microRNAs. Plant, Cell & Environment 41:1−15 doi: 10.1111/pce.12956 |
[101] |
Gao J, Ni X, Li H, Hayat F, Shi T, et al. 2021. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot (Prunus mume Sieb. et Zucc.). Plant Mol Biol 105:83−97 doi: 10.1007/s11103-020-01070-3 |
[102] |
Garighan J, Dvorak E, Estevan J, Loridon K, Huettel B, et al. 2021. The identification of small RNAs differentially expressed in apple buds reveals a potential role of the Mir159-MYB regulatory module during dormancy. Plants 10:2665 doi: 10.3390/plants10122665 |
[103] |
Niu Q, Li J, Cai D, Qian M, Jia H, et al. 2016. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. Journal of Experimental Botany 67:239−57 doi: 10.1093/jxb/erv454 |
[104] |
Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK, et al. 2017. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiologia Plantarum 159:244−61 doi: 10.1111/ppl.12517 |
[105] |
Zhang Y, Wang Y, Gao X, Liu C, Gai S. 2018. Identification and characterization of microRNAs in tree peony during chilling induced dormancy release by high-throughput sequencing. Scientific Reports 8:4537 doi: 10.1038/s41598-018-22415-5 |
[106] |
Potkar R, Recla J, Busov V. 2013. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees. Biochemical and Biophysical Research Communications 431:512−18 doi: 10.1016/j.bbrc.2013.01.027 |
[107] |
Liu S, Mi X, Zhang R, An Y, Zhou Q, et al. 2019. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta 250:1111−29 doi: 10.1007/s00425-019-03207-1 |
[108] |
Bai S, Saito T, Ito A, Tuan PA, Xu Y, et al. 2016. Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia 'Kosui'). BMC Genomics 17:230 doi: 10.1186/s12864-016-2514-8 |
[109] |
Begara-Morales JC, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, et al. 2019. The function of S-nitrosothiols during abiotic stress in plants. Journal of Experimental Botany 70:4429−39 doi: 10.1093/jxb/erz197 |
[110] |
Begara-Morales JC, Chaki M, Valderrama R, Sánchez-Calvo B, Mata-Pérez C, et al. 2018. Nitric oxide buffering and conditional nitric oxide release in stress response. Journal of Experimental Botany 69:3425−38 doi: 10.1093/jxb/ery072 |
[111] |
Wang Z, Ma R, Zhao M, Wang F, Zhang N, Si H. 2020. NO and ABA Interaction Regulates Tuber Dormancy and Sprouting in Potato. Frontiers in Plant Science 11:311 doi: 10.3389/fpls.2020.00311 |
[112] |
Tang L, Chhajed S, Vashisth T, Olmstead MA, Olmstead JW, et al. 2019. Transcriptomic study of early responses to the bud dormancy-breaking agent hydrogen cyanamide in 'TropicBeauty' peach. Journal of the American Society for Horticultural Science 144:244−56 doi: 10.21273/JASHS04686-19 |
[113] |
Sudawan B, Chang CS, Chao HF, Ku MSB, Yen YF. 2016. Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC Plant Biology 16:202 doi: 10.1186/s12870-016-0889-y |
[114] |
Coleman WK. 1983. An evaluation of bromoethane for breaking tuber dormancy in Solanum tuberosum L. American Potato Journal 60:161−67 doi: 10.1007/BF02853997 |
[115] |
Destefano-Beltrán L, Knauber D, Huckle L, Suttle J. 2006. Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. Journal of Experimental Botany 57:2879−86 doi: 10.1093/jxb/erl050 |
[116] |
Reis RC, Côrrea PC, Devilla IA, Santos ES, Ascheri DPR, et al. 2013. Drying of yam starch (Discorea ssp.) and glycerol filmogenic solutions at different temperatures. LWT - Food Science and Technology 50:651−56 doi: 10.1016/j.lwt.2012.07.033 |
[117] |
Koo AJK, Howe GA. 2009. The wound hormone jasmonate. Phytochemistry 70:1571−80 doi: 10.1016/j.phytochem.2009.07.018 |
[118] |
Sadawarti MJ, Pandey KK, Singh BP, Samadiya RK. 2016. A review on potato microtuber storability and dormancy. Journal of Applied and Natural Science 8:2319−24 doi: 10.31018/jans.v8i4.1132 |
[119] |
Khokhar KM. 2020. A short review on onion bulb dormancy metabolism. Advances in Biotechology & Microbiology 15:555915 |
[120] |
Debeaujon I, Léon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122:403−14 doi: 10.1104/pp.122.2.403 |
[121] |
Fugate KK, Ribeiro WS, Lulai EC, Deckard EL, Finger FL. 2016. Cold temperature delays wound healing in postharvest sugarbeet roots. Frontiers in Plant Science 7:499 doi: 10.3389/fpls.2016.00499 |
[122] |
Mustefa G, Mohammed W, Dechassa N, Gelmesa D. 2017. Effects of different dormancy-breaking and storage methods on seed tuber sprouting and subsequent yield of two potato (Solanum tuberosum L.) varieties. Open Agriculture 2:220−29 doi: 10.1515/opag-2017-0023 |
[123] |
Struik PC, van der Putten PEL, Caldiz DO, Scholte K. 2006. Response of stored potato seed tubers from contrasting cultivars to accumulated day-degrees. Crop Science 46:1156−68 doi: 10.2135/cropsci2005.08-0267 |
[124] |
Konze JR, Kwiatkowski GM. 1981. Rapidly induced ethylene formation after wounding is controlled by the regulation of 1-aminocyclopropane-1-carboxylic acid synthesis. Planta 151:327−30 doi: 10.1007/BF00393286 |
[125] |
Lulai EC, Suttle JC, Pederson SM. 2008. Regulatory involvement of abscisic acid in potato tuber wound-healing. Journal of Experimental Botany 59:1175−86 doi: 10.1093/jxb/ern019 |
[126] |
Footitt S, Clewes R, Feeney M, Finch-Savage WE, Frigerio L. 2019. Aquaporins influence seed dormancy and germination in response to stress. Plant, Cell & Environment 42:2325−39 doi: 10.1111/pce.13561 |