[1]

Prasad PV, Kakani VG, Reddy RK. 2017. Ozone Depletion. In Encyclopedia of Applied Plant Sciences, eds. Thomas B, Murray BG, Murphy DJ, Vol. 3. Waltham, MA: Academic Press, Elsevier. pp. 318−26 https://doi.org/10.1016/B978-0-12-394807-6.00015-0

[2]

Williamson CE, Zepp RG, Lucas RM, Madronich S, Ballare CL, et al. 2014. Solar ultraviolet radiation in a changing climate. Nature Climate Change 4:434−41

doi: 10.1038/nclimate2225
[3]

Baroniya SS, Kataria S, Pandey GP, Guruprasad KN. 2014. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation. The Crop Journal 2:388−97

doi: 10.1016/j.cj.2014.08.002
[4]

Klem K, Ač A, Holub P, Kováč D, Špunda V, et al. 2012. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environmental and Experimental Botany 75:52−64

doi: 10.1016/j.envexpbot.2011.08.008
[5]

Joshi P, Gartia S, Pradhan MK, Panigrahi S, Nayak L, et al. 2013. Acclimation of clusterbean cotyledon to UV-B radiation in the presence of UV-A: partial restoration of photosynthetic energy balance and redox homeostasis. Acta Physiologiae Plantarum 35:2323−28

doi: 10.1007/s11738-013-1245-6
[6]

Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomés E, et al. 2013. Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Science 213:114−22

doi: 10.1016/j.plantsci.2013.08.010
[7]

Majer P, Hideg É. 2012. Developmental stage is an important factor that determines the antioxidant responses of young and old grapevine leaves under UV irradiation in a green-house. Plant Physiology and Biochemistry 50:15−23

doi: 10.1016/j.plaphy.2011.09.018
[8]

Singh S, Agrawal SB, Agrawal M. 2015. Responses of pea plants to elevated UV-B radiation at varying nutrient levels: N-metabolism, carbohydrate pool, total phenolics and yield. Functional Plant Biology 42:1045−56

doi: 10.1071/FP15003
[9]

Ballaré CL, Mazza CA, Austin AT, Pierik R. 2012. Canopy light and plant health. Plant Physiology 160:145−55

doi: 10.1104/pp.112.200733
[10]

Hideg É, Jansen MAK, Strid Å. 2013. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Sciences 18:107−15

doi: 10.1016/j.tplants.2012.09.003
[11]

Dou H, Niu G, Gu M. 2019. Pre-harvest UV-B radiation and photosynthetic photon flux density interactively affect plant photosynthesis, growth, and secondary metabolites accumulation in basil (Ocimum basilicum) plants. Agronomy 9:434

doi: 10.3390/agronomy9080434
[12]

Kakani VG, Reddy KR, Zhao D, Sailaja K. 2003. Field crop responses to ultraviolet-B radiation: a review. Agricultural and Forest Meteorology 120:191−218

doi: 10.1016/j.agrformet.2003.08.015
[13]

Qaderi MM, Reid DM, Yeung EC. 2007. Morphological and physiological responses of canola (Brassica napus) siliquas and seeds to UVB and CO2 under controlled environment conditions. Environmental and Experimental Botany 60:428−37

doi: 10.1016/j.envexpbot.2006.12.019
[14]

Al Jaouni S, Saleh AM, Wadaan MAM, Hozzein WN, Selim S, et al. 2018. Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. Journal of Plant Physiology 224−225:121−31

doi: 10.1016/j.jplph.2018.03.016
[15]

Dou H, Niu G, Gu M, Masabni JG. 2018. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. HortScience 53:496−503

doi: 10.21273/HORTSCI12785-17
[16]

Aphalo PJ, Jansen MAK, McLeod AR, Urban O. 2015. Ultraviolet radiation research: from the field to the laboratory and back. Plant, Cell & Environment 38:853−55

doi: 10.1111/pce.12537
[17]

Johnson CB, Kirby J, Naxakis G, Pearson S. 1999. Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Phytochemistry 51:507−10

doi: 10.1016/S0031-9422(98)00767-5
[18]

Ioannidis D, Bonner L, Johnson CB. 2002. UV-B is required for normal development of oil glands in Ocimum basilicum L. (sweet basil). Annals of Botany 90:453−60

doi: 10.1093/aob/mcf212
[19]

Sakalauskaitė J, Viškelis P, Duchovskis P, Dambrauskienė E, Sakalauskienė S, et al. 2012. Supplementary UV-B irradiation effects on basil (Ocimum basilicum L.) growth and phytochemical properties. Journal of Food, Agriculture & Environment 10:342−46

[20]

Mosadegh H, Trivellini A, Ferrante A, Lucchesini M, Vernieri P, et al. 2018. Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Scientia Horticulturae 229:107−16

doi: 10.1016/j.scienta.2017.10.043
[21]

Reddy KR, Hodges HF, Read JJ, McKinion JM, Baker JT, Tarpley L, Reddy VR. 2001. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling. Biotronics 30:27−50

[22]

Zhao D, Reddy KR, Kakani VG, Read JJ, Sullivan JH. 2003. Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. Plant, Cell & Environment 26:771−82

doi: 10.1046/j.1365-3040.2003.01019.x
[23]

Wijewardana C, Hock H, Henry B, Reddy KR. 2015. Screening corn hybrids for cold tolerance using morphological traits for early season seeding. Crop Science 55:851−67

doi: 10.2135/cropsci2014.07.0487
[24]

Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station 347:2−32

[25]

McKinion JM, Hodges HF. 1985. Automated system for measurement of evapotranspiration from closed environmental growth chambers. Transactions of the American Society of Agricultural Engineers 28:1825−28

doi: 10.13031/2013.32526
[26]

Brazel SR, Barickman TC, Sams CE. 2021. Short-term waterlogging of kale (Brassica oleracea L. var. acephala) plants causes a decrease in carotenoids and chlorophylls while increasing nutritionally important glucosinolates. ISHS Acta Horticulturae 1329:175−80

doi: 10.17660/actahortic.2021.1329.21
[27]

Kopsell DA, Kopsell DE, Lefsrud MG, Curran-Celentano J, Dukach LE. 2004. Variation in lutein, β-carotene, and chlorophyll concentrations among Brassica oleracea cultigens and seasons. HortScience 39:361−64

doi: 10.21273/HORTSCI.39.2.361
[28]

Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189−98

doi: 10.1016/0003-9861(68)90654-1
[29]

Mukherjee SP, Choudhuri MA. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiologia Plantarum 58:166−70

doi: 10.1111/j.1399-3054.1983.tb04162.x
[30]

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32:93−101

doi: 10.1093/jxb/32.1.93
[31]

Trevelyan WE, Harrison JS. 1952. Studies on yeast metabolism. 1. Fractionation and microdetermination of cell carbohydrates. The Biochemical Journal 50:298−303

doi: 10.1042/bj0500298
[32]

Brin M. 1966. Transketolase: clinical aspects. In Methods in Enzymology, Vol. 9: 377. New York: Academic Press. pp. 506−14 https://doi.org/10.1016/0076-6879(66)09101-8

[33]

Habibur Rahman Pramanik M, Imai R. 2005. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Molecular Biology 58:751−62

doi: 10.1007/s11103-005-7404-4
[34]

Hottiger T, Boller T, Wiemken A. 1987. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Letters 220:113−15

doi: 10.1016/0014-5793(87)80886-4
[35]

Klutts S, Pastuszak I, Edavana VK, Thampi P, Pan YT, et al. 2003. Purification, cloning, expression, and properties of mycobacterial trehalose-phosphate phosphatase. The Journal of Biological Chemistry 278:2093−100

doi: 10.1074/jbc.M209937200
[36]

Einig W, Hampp R. 1990. Carbon partitioning in Norway spruce: amounts of fructose 2,6-bisphosphate and of intermediates of starch/sucrose synthesis in relation to needle age and degree of needle loss. Trees 4:9−15

doi: 10.1007/BF00226234
[37]

Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry 106:207−12

doi: 10.1016/0003-2697(80)90139-6
[38]

Zhao D, Reddy KR, Kakani VG, Koti S, Gao W. 2005. Physiological causes of cotton fruit abscission under conditions of high temperature and enhanced ultraviolet-B radiation. Physiologia Plantarum 124:189−99

doi: 10.1111/j.1399-3054.2005.00491.x
[39]

Kakani VG, Reddy KR, Zhao D, Gao W. 2004. Senescence and hyperspectral reflectance of cotton leaves exposed to ultraviolet-B radiation and carbon dioxide. Physiologia Plantarum 121:250−57

doi: 10.1111/j.0031-9317.2004.00314.x
[40]

Kataria S, Jajoo A, Guruprasad KN. 2014. Impact of increasing ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B:Biology 137:55−66

doi: 10.1016/j.jphotobiol.2014.02.004
[41]

Dusenge ME, Duarte AG, Way DA. 2019. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytologist 221:32−49

doi: 10.1111/nph.15283
[42]

Sharkey TD, Stitt M, Heineke D, Gerhardt R, Raschke K, et al. 1986. Limitation of photosynthesis by carbon metabolism: II. O2-insenstive CO2 uptake results from limitation of triose phosphate utilization. Plant Physiology 81:1123−29

doi: 10.1104/pp.81.4.1123
[43]

Takahashi S, Badger MR. 2011. Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16:53−60

doi: 10.1016/j.tplants.2010.10.001
[44]

Romanatti PV, Rocha GA, Veroneze Júnior V, Santos Filho PR, de Souza TC, et al. 2019. Limitation to photosynthesis in leaves of eggplant under UVB according to anatomical changes and alterations on the antioxidant system. Scientia Horticulturae 249:449−54

doi: 10.1016/j.scienta.2019.01.060
[45]

Mosadegh H, Trivellini A, Lucchesini M, Ferrante A, Maggini R, et al. 2019. UV-B physiological changes under conditions of distress and eustress in sweet basil. Plants 8:396

doi: 10.3390/plants8100396
[46]

North HM, De Almeida A, Boutin JP, Frey A, To A, et al. 2007. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. The Plant Journal 50:810−24

doi: 10.1111/j.1365-313X.2007.03094.x
[47]

Ðinh ST, Gális I, Baldwin IT. 2013. UVB radiation and 17-hydroxygeranyllinalool diterpene glycosides provide durable resistance against mirid (Tupiocoris notatus) attack in field-grown Nicotiana attenuata plants. Plant, Cell & Environment 36:590−606

doi: 10.1111/j.1365-3040.2012.02598.x
[48]

Morales M, Munné-Bosch S. 2019. Malondialdehyde: Facts and Artifacts. Plant Physiology 180(3):1246−50

doi: 10.1104/pp.19.00405
[49]

Teklemariam T, Blake TJ. 2003. Effects of UVB preconditioning on heat tolerance of cucumber (Cucumis sativus L.). Environmental and Experimental Botany 50:169−82

doi: 10.1016/S0098-8472(03)00024-8
[50]

Barickman TC, Adhikari B, Sehgal A, Walne CH, Reddy KR, Gao W. 2021. Drought and elevated CO2 impacts photosynthesis and biochemicals of basil (Ocimum basilicum L.). Stresses 1:223−37

doi: 10.3390/stresses1040016
[51]

Hasanuzzaman M, Bhuyan MHMB, Zulfiqar F, Raza A, Mohammad Mohsin S, et al. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681

doi: 10.3390/antiox9080681