[1]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[2]

Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60:796−804

doi: 10.1111/jipb.12689
[3]

Ma X, Li Q, Yu Y, Qiao Y, Haq SU, et al. 2020. The CBL-CIPK pathway in plant response to stress signals. International Journal of Molecular Sciences 21:5668

doi: 10.3390/ijms21165668
[4]

Verma P, Sanyal SK, Pandey GK. 2021. Ca2+-CBL-CIPK: a modulator system for efficient nutrient acquisition. Plant Cell Reports 40:2111−22

doi: 10.1007/s00299-021-02772-8
[5]

Cho JH, Lee JH, Park YK, Choi MN, Kim K. 2016. Calcineurin B-like protein CBL10 directly interacts with TOC34 (translocon of the outer membrane of the chloroplasts) and decreases its GTPase activity in Arabidopsis. Frontiers in Plant Science 7:1911

doi: 10.3389/fpls.2016.01911
[6]

Trupkin SA, Auge GA, Zhu J, Sanchez RA, Botto JF. 2017. SALT OVERLY SENSITIVE 2 (SOS2) and Interacting Partners SOS3 and ABSCISIC ACID-INSENSITIVE 2 (ABI2) promote red-light-dependent germination and seedling deetiolation in Arabidopsis. International Journal of Plant Sciences 178:485−93

doi: 10.1086/692097
[7]

Nagae M, Nozawa A, Koizumi N, Sano H, Hashimoto H, et al. 2003. The crystal structure of the novel calcium-binding protein AtCBL2 from Arabidopsis thaliana. Journal of Biological Chemistry 278:42240−46

doi: 10.1074/jbc.M303630200
[8]

Albrecht V, Ritz O, Linder S, Harter K, Kudla J. 2001. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. The Embo Journal 20:1051−63

doi: 10.1093/emboj/20.5.1051
[9]

Batistic O, Kudla J. 2004. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915−24

doi: 10.1007/s00425-004-1333-3
[10]

Yu Q, An L, Li W. 2014. The CBL-CIPK network mediates different signaling pathways in plants. Plant Cell Reports 33:203−14

doi: 10.1007/s00299-013-1507-1
[11]

Sánchez-Barrena MJ, Fujii H, Angulo I, Martínez-Ripoll M, Zhu J, et al. 2007. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Molecular Cell 26:427−35

doi: 10.1016/j.molcel.2007.04.013
[12]

Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. 2004. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology 134:43−58

doi: 10.1104/pp.103.033068
[13]

Harper J E, Breton G, Harmon A. 2004. Decoding Ca2+ signals through plant protein kinases. Annual Review of Plant Biology 55:263−88

doi: 10.1146/annurev.arplant.55.031903.141627
[14]

Qiu Q, Guo Y, Dietrich MA, Schumaker KS, Zhu J. 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the United States of America 99:8436−41

doi: 10.1073/pnas.122224699
[15]

Yue Y, Zhang M, Zhang J, Duan L, Li Z. 2012. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology 169:255−61

doi: 10.1016/j.jplph.2011.10.007
[16]

Liu J, Zhu J. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280:1943−45

doi: 10.1126/science.280.5371.1943
[17]

Rus A, Lee BH, Muñoz-Mayor A, Sharkhuu A, Miura K, et al. 2004. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiology 136:2500−11

doi: 10.1104/pp.104.042234
[18]

Li D, Ma N, Wang J, Yang D, Zhao S, et al. 2013. Overexpression of tomato enhancer of SOS3-1 (LeENH1) in tobacco enhanced salinity tolerance by excluding Na+ from the cytosol. Plant Physiology and Biochemistry 70:150−58

doi: 10.1016/j.plaphy.2013.05.014
[19]

Zhao Y, Wang T, Zhang W, Li X. 2011. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis. New Phytologist 189:1122−34

doi: 10.1111/j.1469-8137.2010.03545.x
[20]

Van Oosten MJ, Sharkhuu A, Batelli G, Bressan RA, Maggio A. 2013. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Molecular Biology 83:405−15

doi: 10.1007/s11103-013-0099-z
[21]

Yin J, Jia J, Lian Z, Hu Y, Guo J, et al. 2019. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicology and Environmental Safety 169:8−17

doi: 10.1016/j.ecoenv.2018.10.105
[22]

Zhu Y, Jiang X, Zhang J, He Y, Zhu X, et al. 2020. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry 156:209−20

doi: 10.1016/j.plaphy.2020.09.014
[23]

Li X, Sun Y, Wang X, Dong X, Zhang T, et al. 2019. Relationship between key environmental factors and profiling of volatile compounds during cucumber fruit development under protected cultivation. Food Chemistry 290:308−15

doi: 10.1016/j.foodchem.2019.03.140
[24]

Simranjit K, Kanchan A, Prasanna R, Ranjan K, Ramakrishnan B, et al. 2019. Microbial inoculants as plant growth stimulating and soil nutrient availability enhancing options for cucumber under protected cultivation. World Journal of Microbiology & Biotechnology 35:51

doi: 10.1007/s11274-019-2623-z
[25]

Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, et al. 2014. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry 83:126−33

doi: 10.1016/j.plaphy.2014.07.019
[26]

Yuan Y, Zhong M, Du N, Shu S, Sun J, et al. 2019. Putrescine enhances salt tolerance of cucumber seedlings by regulating ion homeostasis. Environmental and Experimental Botany 165:70−82

doi: 10.1016/j.envexpbot.2019.05.019
[27]

Yan Y, Sun M, Li Y, Wang J, He C, et al. 2021. Correction to: The CsGPA1-CsAQPs module is essential for salt tolerance of cucumber seedlings. Plant Cell Reports 40:2015−16

doi: 10.1007/s00299-021-02782-6
[28]

Wu J, Shu S, Li C, Sun J, Guo S. 2018. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiology and Biochemistry 128:152−62

doi: 10.1016/j.plaphy.2018.05.002
[29]

Sardar A, Nandi AK, Chattopadhyay D. 2017. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. Journal of Experimental Botany 68:3573−84

doi: 10.1093/jxb/erx170
[30]

Chen L, Wang Q, Zhou L, Ren F, Li D, et al. 2013. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Molecular Biology Reports 40:4759−67

doi: 10.1007/s11033-013-2572-9
[31]

Tripathi V, Syed N, Laxmi A, Chattopadhyay D. 2009. Role of CIPK6 in root growth and auxin transport. Plant Signaling & Behavior 4:663−65

doi: 10.4161/psb.4.7.9002
[32]

Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, et al. 2011. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Research 21:1116−30

doi: 10.1038/cr.2011.50
[33]

de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin GB, et al. 2013. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. The Plant Cell 25:2748−64

doi: 10.1105/tpc.113.113530
[34]

Deng J, Yang X, Sun W, Miao Y, He L, et al. 2020. The Calcium Sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with Tonoplast Sugar Transporter TST2. Plant Physiology 183:236−49

doi: 10.1104/pp.19.01368
[35]

Liu M, Liang Z, Aranda MA, Hong N, Liu L, et al. 2020. A cucumber green mottle mosaic virus vector for virus-induced gene silencing in cucurbit plants. Plant Methods 16:9

doi: 10.1186/s13007-020-0560-3
[36]

Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67

doi: 10.1111/tpj.13299
[37]

Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. 2009. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal 58:778−90

doi: 10.1111/j.1365-313X.2009.03812.x
[38]

Mao J, Manik SMN, Shi S, Chao J, Jin Y, et al. 2016. Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Genes 7:62

doi: 10.3390/genes7090062
[39]

Yang Y, Qin Y, Xie C, Zhao F, Zhao J, et al. 2010. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase. Plant Cell 22:1313−32

doi: 10.1105/tpc.109.069609
[40]

Yasuda S, Aoyama S, Hasegawa Y, Sato T, Yamaguchi J. 2017. Arabidopsis CBL-interacting protein kinases regulate Carbon/ Nitrogen-nutrient response by phosphorylating ubiquitin ligase ATL31. Molecular Plant 10:605−18

doi: 10.1016/j.molp.2017.01.005
[41]

Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, et al. 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. The Plant Cell 19:1617−34

doi: 10.1105/tpc.105.035626
[42]

Wan H, Zhao Z, Qian C, Sui Y, Malik AA, et al. 2010. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry 399:257−61

doi: 10.1016/j.ab.2009.12.008
[43]

Fang L, Wei X, Liu L, Zhou L, Tian Y, et al. 2021. A tobacco ringspot virus-based vector system for gene and microRNA function studies in cucurbits. Plant Physiology 186:853−64

doi: 10.1093/plphys/kiab146