[1]

International Diabetes Federation. 2021. IDF Diabetes Atlas, 10th Edition. Brussels, Belgium. https://diabetesatlas.org (Accessed 23 November 2021).

[2]

Puls W, Keup U, Krause HP, Thomas G, Hoffmeister F. 1977. Glucosidase inhibition: A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwissenschaften 64:536−37

doi: 10.1007/BF00483562
[3]

Balamurugan V, Raja K, Selvakumar S, Vasanth K. 2022. Phytochemical screening, antioxidant, anti-diabetic and cytotoxic activity of leaves of Pandanus canaranus Warb. Materials Today: Proceedings 48:322−29

doi: 10.1016/j.matpr.2020.07.603
[4]

Wu C, Zhang X, Zhang X, Luan H, Sun G, et al. 2014. The caffeoylquinic acid-rich Pandanus tectorius fruit extract increases insulin sensitivity and regulates hepatic glucose and lipid metabolism in diabetic db/db mice. The Journal of Nutritional Biochemistry 25:412−19

doi: 10.1016/j.jnutbio.2013.12.002
[5]

Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY. 2011. Antihyperglycaemic effects of ethanol extracts of Carica papaya and Pandanus amaryfollius leaf in streptozotocin-induced diabetic mice. Natural Product Research 25:1982−87

doi: 10.1080/14786419.2010.523703
[6]

Chiabchalard A, Nooron N. 2015. Antihyperglycemic effects of Pandanus amaryllifolius Roxb. leaf extract. Pharmacognosy Magazine 11:117−22

doi: 10.4103/0973-1296.149724
[7]

Peungvicha P, Thirawarapan SS, Watanabe H. 1996. Hypoglycemic effect of water extract of the root of Pandanus odorus RIDL. Biological & Pharmaceutical Bulletin 19:364−66

doi: 10.1248/bpb.19.364
[8]

Rajeswari J, Kesavan K, Jayakar B. 2012. Antidiabetic activity and chemical characterization of aqueous/ethanol prop roots extracts of Pandanus fascicularis Lam in streptozotocin-induced diabetic rats. Pacific Journal of Tropical Biomedicine 2:S170−74

doi: 10.1016/S2221-1691(12)60152-X
[9]

dela Cruz TEE, Notarte KIR, Apurillo CCS, Tarman K, Bungihan ME. 2020. Biomining fungal endophytes from tropical plants and seaweeds for drug discovery. In Biodiversity and Biomedicine: Our Future, eds. Ozturk M, Egamberdieva D, Pesic M. United Kingdom: Academic Press, Elsevier. pp. 51−62. https://doi.org/10.1016/b978-0-12-819541-3.00004-9

[10]

Hussain H, Nazir M, Saleem M, Al-Harrasi A, Elizbit, et al. 2021. Fruitful decade of fungal metabolites as anti-diabetic agents from 2010 to 2019: Emphasis on α-glucosidase inhibitors. Phytochemistry Reviews 20:145−79

doi: 10.1007/s11101-020-09733-1
[11]

Chen S, Liu Y, Liu Z, Cai R, Lu Y, et al. 2016. Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess α-glucosidase inhibitory and antibacterial activities. RSC Advances 6:26412−20

doi: 10.1039/C6RA02566H
[12]

Sun K, Zhu G, Hao J, Wang Y, Zhu W. 2018. Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739. Tetrahedron 74:83−87

doi: 10.1016/j.tet.2017.11.039
[13]

Bungihan M, Nonato M, Draeger S, Edison T. 2013. Antimicrobial and antioxidant activities of fungal leaf endophytes associated with Pandanus amaryllifolius Roxb. Philippine Science Letter 6:128−37

[14]

Bungihan M, Tan MA, Takayama H, dela Cruz TEE, Nonato MG. 2013. A new macrolide isolated from the endophytic fungus Colletotrichum sp. Philippine Science Letter 6:58−72

[15]

Bungihan ME, Tan MA, Kitajima M, Kogure N, Franzblau SG, et al. 2011. Bioactive metabolites of Diaporthe sp. P133, an endophytic fungus isolated from Pandanus amaryllifolius. Journal of Natural Medicines 65:606−9

doi: 10.1007/s11418-011-0518-x
[16]

Bungihan ME, Tan MA, Kogure N, Kitajima M, dela Cruz TEE, et al. 2010. A new isocoumarin compound from Guignardia sp. isolated from Pandanus amaryllifolius Roxb. Asian Coordinating Group for Chemistry (ACGC) Chemical Research Communication 24:13−16

[17]

Laluces HMC, Nakayama A, Nonato MG, dela Cruz TE, Tan MA. 2015. Antimicrobial alkaloids from the leaves of Pandanus amaryllifolius. Journal of Applied Pharmaceutical Science 5:151−53

doi: 10.7324/japs.2015.501026
[18]

Nadeau AK, Sorensen JL. 2011. Polyketides produced by Daldinia loculata cultured from Northern Manitoba. Tetrahedron Letters 52:1697−99

doi: 10.1016/j.tetlet.2011.01.150
[19]

Dulymamode R, Cannon PF, Peerally A. 2001. Fungi on endemic plants of Mauritius. Mycological Research 105:1472−79

doi: 10.1017/S0953756201004701
[20]

Dulymamode R, Cannon PF, Sivanesan A, Peerally A. 2001. Fungi from Mauritius: four new ascomycetes on native plants. Mycological Research 105:247−54

doi: 10.1017/S0953756200003506
[21]

Dulymamode R, Cannon PF, Peerally A. 1998. Fungi from Mauritius: Anthostomella species on Pandanus. Mycological Research 102:1319−24

doi: 10.1017/S095375629800642X
[22]

Dulymamode R, Cannon PF, Hyde KD, Peerally A. 2001. Four new ascomycete species from endemic Pandanus of Mauritius. Fungal Divers 8:87−96

[23]

Tibpromma S, Bhat J, Doilom M, Lumyong S, Nontachaiyapoom S, et al. 2016. Three new Hermatomyces species (Lophiotremataceae) on Pandanus odorifer from Southern Thailand. Phytotaxa 275:127

doi: 10.11646/phytotaxa.275.2.4
[24]

Tibpromma S, Daranagama DA, Boonmee S, Promputtha I, Nontachaiyapoom S, et al. 2017. Anthostomelloides krabiensis gen. et sp. nov. (Xylariaceae) from Pandanus odorifer (Pandanaceae). Turkish Journal of Botany 41:107−16

doi: 10.3906/bot-1606-45
[25]

Gao S, Tian W, Liao Z, Wang G, Zeng D, et al. 2020. Chemical constituents from endophytic fungus Annulohypoxylon cf. stygium in Leaves of Anoectochilus roxburghii. Chemistry & Biodiversity 17:e2000424

doi: 10.1002/cbdv.202000424
[26]

Maciel OMC, Tavares RSN, Caluz DRE, Gaspar LR, Debonsi HM. 2018. Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium. Journasl of Photochemistry and Photobiology B: Biology 178:316−22

doi: 10.1016/j.jphotobiol.2017.11.018
[27]

Medina RP, Araujo AR, Andersen RJ, Soares MA, de A Silva F, et al. 2019. Aromatic compounds produced by endophytic fungi isolated from red alga Asparagopsis taxiformis - Falkenbergia stage. Natural Product Research 33:443−46

doi: 10.1080/14786419.2018.1455037
[28]

Cheng MJ, Wu M, Chen J, Cheng Y, Hsieh MT, et al. 2014. Secondary metabolites from the endophytic fungus Annulohypoxylon stygium BCRC 34024. Chemistry of Natural Compounds 50:237−41

doi: 10.1007/s10600-014-0921-0
[29]

McKenzie EHC, Whitton SR, Hyde KD. 2002. The Pandanaceae - Does it have a diverse and unique fungal biota? In Tropical Mycology, eds, Watling R, Frankland JC, Ainsworth A, Isaac S, Robinson CH. Volume 2. UK: CABI. pp. 51−60 www.cabi.org/cabebooks/ebook/20023069160

[30]

Pecundo MH, dela Cruz TEE, Chen T, Notarte KI, Ren H, et al. 2021. Diversity, phylogeny and antagonistic activity of fungal endophytes associated with endemic species of Cycas (Cycadales) in China. Journal of Fungi 7:572

doi: 10.3390/jof7070572
[31]

Agrawal S, Samanta S, Deshmukh SK. 2021. The antidiabetic potential of endophytic fungi: Future prospects as therapeutic agents. Biotechnology and Applied Biochemistry Early View

doi: 10.1002/bab.2192
[32]

Ye G, Huang C, Li J, Chen T, Tang J, et al. 2021. Isolation, structural characterization and antidiabetic activity of new diketopiperazine alkaloids from mangrove endophytic fungus Aspergillus sp. 16-5c. Marine Drugs 19:402

doi: 10.3390/md19070402
[33]

van de Laar FA. 2008. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vascular Health and Risk Management 4:1189−95

doi: 10.2147/vhrm.s3119
[34]

Song X, Luo J, Li Y, Huang L, Chen C, et al. 2020. A new chromene derivative from Alternaria sp. ZG22. Chemistry of Natural Compounds 56:409−11

doi: 10.1007/s10600-020-03049-4
[35]

Wu J, Liao Z, Lin P. 2020. Chemical constituents of Agaricus gennadii. Chemistry of Natural Compounds 56:761−62

doi: 10.1007/s10600-020-03143-7
[36]

Tanapichatsakul C, Pansanit A, Monggoot S, Brooks S, Prachya S, et al. 2020. Antifungal activity of 8-methoxynaphthalen-1-ol isolated from the endophytic fungus Diatrype palmicola MFLUCC 17-0313 against the plant pathogenic fungus Athelia rolfsii on tomatoes. PeerJ 8:e9103

doi: 10.7717/peerj.9103
[37]

Anke H, Stadler M, Mayer A, Sterner O. 1995. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Canadian Journal of Botany 73:932−39

doi: 10.1139/b95-341
[38]

Dai J, Krohn K, Flörke U, Draeger S, Schulz B, et al. 2006. Metabolites from the endophytic fungusNodulisporium sp. from Juniperus cedre. European Journal of Organic Chemistry 2006:3498−506

doi: 10.1002/ejoc.200600261
[39]

Rukachaisirikul V, Sommart U, Phongpaichit S, Hutadilok-Towatana N, Rungjindamai N, et al. 2007. Metabolites from the Xylariaceous fungus PSU-A80. Chemical & Pharmaceutical Bulletin 55:1316−18

doi: 10.1248/cpb.55.1316
[40]

Wen L, Cai X, Xu F, She Z, Chan WL, et al. 2009. Three metabolites from the mangrove endophytic fungus Sporothrix sp. (#4335) from the South China Sea. The Journal of Organic Chemistry 74:1093−98

doi: 10.1021/jo802096q
[41]

Chang CW, Chang HS, Cheng MJ, Liu TW, Hsieh SY, et al. 2014. Inhibitory effects of constituents of an endophytic fungus Hypoxylon investiens on nitric oxide and interleukin-6 production in RAW264.7 macrophages. Chemistry & Biodiversity 11:949−61

doi: 10.1002/cbdv.201300364
[42]

Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J. 2016. Xylariphilone: a new azaphilone derivative from the seagrass-derived fungus Xylariales sp. PSU-ES163. Natural Product Research 30:46−51

doi: 10.1080/14786419.2015.1032282
[43]

Hussain H, Root N, Jabeen F, Al-Harrasi A, Ahmad M, et al. 2015. Microsphaerol and Seimatorone: Two new compounds isolated from the endophytic fungi, Microsphaeropsis sp. and Seimatosporium sp. Chemistry & Biodiversity 12:289−94

doi: 10.1002/cbdv.201400098
[44]

Liu Y, Stuhldreier F, Kurtán T, Mándi A, Arumugam S, et al. 2017. Daldinone derivatives from the mangrove-derived endophytic fungus Annulohypoxylon sp. RSC Advances 7:5381−93

doi: 10.1039/C6RA27306H
[45]

Stadler M, Fournier J, Quang DN, Akulov AY. 2007. Metabolomic studies on the chemical ecology of the Xylariaceae (Ascomycota). Natural Product Communications 2:287−304

doi: 10.1177/1934578x0700200311
[46]

Li W, Lee C, Bang SH, Ma JY, Kim S, et al. 2017. Isochromans and related constituents from the endophytic fungus Annulohypoxylon truncatum of Zizania caduciflora and their anti-inflammatory effects. Journal of Natural Products 80:205−9

doi: 10.1021/acs.jnatprod.6b00698
[47]

Kongyen W, Rukachaisirikul V, Phongpaichit S, Sakayaroj J. 2015. A new hydronaphthalenone from the mangrove-derived Daldinia eschscholtzii PSU-STD57. Natural Product Research 29:1995−99

doi: 10.1080/14786419.2015.1022542
[48]

Notarte KI, Nakao Y, Yaguchi T, Bungihan M, Suganuma K, dela Cruz TEE. 2017. Trypanocidal activity, cytotoxicity and histone modifications induced by malformin A1 isolated from the marine-derived fungus Aspergillus tubingensis IFM 63452. Mycosphere 8:111−20

doi: 10.5943/mycosphere/8/1/10
[49]

Santiago KAA, Edrada-Ebel R, dela Cruz TEE, Cheow YL, Ting ASY. 2021. Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC–MS-Based metabolomics. Biology 10:191

doi: 10.3390/biology10030191
[50]

Tan MA, Castro SG, Oliva PMP, Yap PRJ, Nakayama A, et al. 2020. Biodiscovery of antibacterial constituents from the endolichenic fungi isolated from Parmotrema rampoddense. 3 Biotech 10:212

doi: 10.1007/s13205-020-02213-5
[51]

Nonato MG, Madulid RS. 1997. Alkaloid-Bearing Pandanus Species in Luzon, Philippines. Acta Manilana 45:21−30

[52]

Schulz B, Wanke U, Draeger S, Aust HJ. 1993. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycological Research 97:1447−50

doi: 10.1016/S0953-7562(09)80215-3
[53]

Kjer J, Debbab A, Aly AH, Proksch P. 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols 5:479−90

doi: 10.1038/nprot.2009.233
[54]

Kang W, Song Y, Gu X. 2012. α-glucosidase inhibitory in vitro and antidiabetic activity in vivo of Osmanthus fragrans. Journal of Medicinal Plants Research 6:2850−56

doi: 10.5897/jmpr11.1402