[1]

Ezquer I, Salameh I, Colombo L, Kalaitzis P. 2020. Plant cell walls tackling climate change: Biotechnological strategies to improve crop adaptations and photosynthesis in response to global warming. Plants 9:212

doi: 10.3390/plants9020212
[2]

Körner C. 2003. Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. Philosophical Transactions Series A: Mathematical, Physical, and Engineering Sciences 361:2023−41

doi: 10.1098/rsta.2003.1241
[3]

Hakeem K, Sabir M, Ozturk M, Mermut AR. 2015. Soil Remediation and Plants: Prospects and Challenges. London: Academic Press, Elsevier. 724 pp

[4]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[5]

Tenhaken R. 2015. Cell wall remodeling under abiotic stress. Frontiers in Plant Science 5:771

doi: 10.3389/fpls.2014.00771
[6]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46

doi: 10.1146/annurev.arplant.54.031902.134938
[7]

Wang JP, Matthews ML, Williams CM, Shi R, Yang C, et al. 2018. Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications 9:1579

doi: 10.1038/s41467-018-03863-z
[8]

Zhang K, Qian Q, Huang Z, Wang Y, Li M, et al. 2006. GOLD HULL AND INTERNODE2 encodes a primarily multifunctional cinnamyl-alcohol dehydrogenase in rice. Plant Physiology 140:972−83

doi: 10.1104/pp.105.073007
[9]

hang J, Tuskan GA, Tschaplinski TJ, Muchero W, Chen J. 2020. Transcriptional and post-transcriptional regulation of lignin biosynthesis pathway genes in Populus. Frontiers in Plant Science 11:652

doi: 10.3389/fpls.2020.00652
[10]

Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. 2010. Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology 52:360−76

doi: 10.1111/j.1744-7909.2010.00892.x
[11]

Cesarino I. 2019. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Current Opinion in Biotechnology 56:209−14

doi: 10.1016/j.copbio.2018.12.012
[12]

Moura-Sobczak J, Souza U, Mazzafera P. 2011. Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proceedings 5:P103

doi: 10.1186/1753-6561-5-s7-p103
[13]

Tuladhar A, Ohtsuka S, Nii N. 2016. Anatomical study of wax apple (Syzygium samarangense) roots under flooded condition. Acta Horticulturae 1110:85−90

doi: 10.17660/actahortic.2016.1110.13
[14]

de Lima RB, dos Santos TB, Vieira LGE, de Lourdes Lúcio Ferrarese M, Ferrarese-Filho O, et al. 2014. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L. ) leaf cells. Carbohydrate Polymers 112:686−94

doi: 10.1016/j.carbpol.2014.06.042
[15]

Hu Y, Li WC, Xu YQ, Li GJ, Liao Y, et al. 2009. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. Journal of Applied Genetics 50:213−223

doi: 10.1007/BF03195675
[16]

Srivastava S, Vishwakarma RK, Arafat YA, Gupta SK, Khan BM. 2015. Abiotic stress induces change in Cinnamoyl CoA Reductase (CCR) protein abundance and lignin deposition in developing seedlings ofLeucaena leucocephala. Physiology and Molecular Biology of Plants 21:197−205

doi: 10.1007/s12298-015-0289-z
[17]

Hori C, Yu X, Mortimer JC, Sano R, Matsumoto T, et al. 2020. Impact of abiotic stress on the regulation of cell wall biosynthesis in Populus trichocarpa. Plant Biotechnology 37:273−83

doi: 10.5511/plantbiotechnology.20.0326a
[18]

Loreti E, van Veen H, Perata P. 2016. Plant responses to flooding stress. Current Opinion in Plant Biology 33:64−71

doi: 10.1016/j.pbi.2016.06.005
[19]

Komatsu S, Kobayashi Y, Nishizawa K, Nanjo Y, Furukawa K. 2010. Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Amino Acids 39:1435−49

doi: 10.1007/s00726-010-0608-1
[20]

Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, et al. 2009. Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiology 149:461−73

doi: 10.1104/pp.108.125989
[21]

Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, et al. 2012. Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species. The New Phytologist 194:129−41

doi: 10.1111/j.1469-8137.2011.03975.x
[22]

Li H, Wang Y, Jiang J, Liu G, Gao C, et al. 2009. Identification of genes responsive to salt stress on Tamarix hispida roots. Gene 433:65−71

doi: 10.1016/j.gene.2008.12.007
[23]

Alghamdi BA, Bafeel SO, Edris S, Atef A, Al-Matary M, et al. 2021. Molecular mechanisms underlying salt stress tolerance in jojoba (Simmondsia Chinensis). Biosciences Biotechnology Research Asia 18:37−57

doi: 10.13005/bbra/2895
[24]

Gulen H, Eris A. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science 166:739−44

doi: 10.1016/j.plantsci.2003.11.014
[25]

Cai Z, He F, Feng X, Liang T, Wang H, et al. 2020. Transcriptomic analysis reveals important roles of lignin and flavonoid biosynthetic pathways in rice thermotolerance during reproductive stage. Frontiers in Genetics 11:562937

doi: 10.3389/fgene.2020.562937
[26]

Xu J, Belanger F, Huang B. 2008. Differential gene expression in shoots and roots under heat stress for a geothermal and non-thermal Agrostis grass species contrasting in heat tolerance. Environmental and Experimental Botany 63:240−47

doi: 10.1016/j.envexpbot.2007.11.011
[27]

Lima RB, dos Santos TB, Vieira LGE, Ferrarese MdeL, Ferrarese-Filho O, et al. 2013. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L. ). Carbohydrate polymers 93:135−43

doi: 10.1016/j.carbpol.2012.05.015
[28]

Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, et al. 2015. Cell wall metabolism in response to abiotic stress. Plants 4:112−66

doi: 10.3390/plants4010112
[29]

Ghosh D, Xu J. 2014. Abiotic stress responses in plant roots: a proteomics perspective. Frontiers in Plant Science 5:6

doi: 10.3389/fpls.2014.00006
[30]

Ji H, Wang Y, Cloix C, Li K, Jenkins GI, et al. 2015. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Genetics 11:e1005471

doi: 10.1371/journal.pgen.1005471
[31]

dos Santos AB, Bottcher A, Vicentini R, Sampaio Mayer JL, Kiyota E, et al. 2015. Lignin biosynthesis in sugarcane is affected by low temperature. Environmental and Experimental Botany 120:31−42

doi: 10.1016/j.envexpbot.2015.08.001
[32]

Liu W, Zhang J, Jiao C, Yin X, Fei Z, et al. 2019. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research 6:49

doi: 10.1038/s41438-019-0131-9
[33]

Hausman JF, Evers D, Thiellement H, Jouve L. 2000. Compared responses of poplar cuttings and in vitro raised shoots to short-term chilling treatments. Plant Cell Reports 19:954−60

doi: 10.1007/s002990000229
[34]

Thapa G, Sadhukhan A, Panda SK, Sahoo L. 2012. Molecular mechanistic model of plant heavy metal tolerance. BioMetals 25:489−505

doi: 10.1007/s10534-012-9541-y
[35]

Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF. 2015. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity: differences in the response mechanisms Frontiers in Plant Science 6:133

doi: 10.3389/fpls.2015.00133
[36]

Chen S, Wang Q, Lu H, Li J, Yang D, et al. 2019. Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicology and Environmental Safety 169:134−43

doi: 10.1016/j.ecoenv.2018.11.004
[37]

Luo Z, He J, Polle A, Rennenberg H. 2016. Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnology Advances 34:1131−48

doi: 10.1016/j.biotechadv.2016.07.003
[38]

Shi G, Li D, Wang Y, Liu C, Hu Z, et al. 2019. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L. ) at different developmental stages. The Science of the Total Environment 667:532−39

doi: 10.1016/j.scitotenv.2019.02.394
[39]

Bhardwaj R, Handa N, Sharma R, Kaur H, Kohli S, et al. 2014. Lignins and abiotic stress: An overview. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment, eds. Ahmad P, Wani MR. New York: Springer. pp. 267−96. https://doi.org/10.1007/978-1-4614-8591-9_10

[40]

Tahara K, Norisada M, Hogetsu T, Kojima K. 2005. Aluminum tolerance and aluminum-induced deposition of callose and lignin in the root tips of Melaleuca and Eucalyptus species. Journal of Forest Research 10:325−33

doi: 10.1007/s10310-005-0153-z
[41]

Oleksyn J, Karolewski P, Giertych MJ, Werner A, Tjoelker MG, et al. 1996. Altered root growth and plant chemistry of Pinus sylvestris seedlings subjected to aluminum in nutrient solution. Trees 10:135−44

doi: 10.1007/BF02340765
[42]

Bora K, Sarkar D, Konwar K, Payeng B, Sood K, et al. 2019. Disentanglement of the secrets of aluminium in acidophilic tea plant (Camellia sinensis L. ) influenced by organic and inorganic amendments. Food Research International 120:851−64

doi: 10.1016/j.foodres.2018.11.049
[43]

Ghanati F, Morita A, Yokota H. 2005. Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant and Soil 276:133−41

doi: 10.1007/s11104-005-3697-y
[44]

Xu Q, Wang Y, Ding Z, Fan K, Ma D, et al. 2017. Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves. Plant Physiology and Biochemistry 115:141−51

doi: 10.1016/j.plaphy.2017.03.017
[45]

Wu YM, Wang YY, Zhou YF, Meng X, Huang ZR, et al. 2019. Analysis of interacting proteins of aluminum toxicity response factor ALS3 and CAD in citrus. International Journal of Molecular Sciences 20:4846

doi: 10.3390/ijms20194846
[46]

Zagoskina NV, Goncharuk EA, Alyavina AK. 2007. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russian Journal of Plant Physiology 54:237−43

doi: 10.1134/S1021443707020124
[47]

Garcia JS, Dalmolin  C, Cortez PA, Barbeira PS, Mangabeira PAO, França MGC. 2018. Short-term cadmium exposure induces gas exchanges, morphological and ultrastructural disturbances in mangrove Avicennia schaueriana young plants. Marine Pollution Bulletin 131:122−129

doi: 10.1016/j.marpolbul.2018.03.058
[48]

Elobeid M, Göbel C, Feussner I, Polle A. 2012. Cadmium interferes with auxin physiology and lignification in poplar. Journal of Experimental Botany 63:1413−21

doi: 10.1093/jxb/err384
[49]

Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, et al. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology 127:887−98

doi: 10.1104/pp.010318
[50]

Barbosa ICR, Rojas-Murcia N, Geldner N. 2019. The Casparian strip—one ring to bring cell biology to lignification. Current Opinion in Biotechnology 56:121−129

doi: 10.1016/j.copbio.2018.10.004
[51]

Tao Q, Jupa R, Liu Y, Luo J, Li J, et al. 2019. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. Plant, Cell & Environment 42:1425−40

doi: 10.1111/pce.13506
[52]

Han X, Zhang Y, Yu M, Zhang J, Xu D, et al. 2020. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes. Tree Physiology 40:1126−42

doi: 10.1093/treephys/tpaa029
[53]

Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, et al. 2012. Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution 163:117−26

doi: 10.1016/j.envpol.2011.12.031
[54]

Li J, Yu J, Du D, Liu J, Lu H, et al. 2019. Analysis of anatomical changes and cadmium distribution in Aegiceras corniculatum (L. ) Blanco roots under cadmium stress. Marine Pollution Bulletin 149:110536

doi: 10.1016/j.marpolbul.2019.110536
[55]

Kovácik J, Klejdus B. 2008. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Reports 27:605−15

doi: 10.1007/s00299-007-0490-9
[56]

Su N, Ling F, Xing A, Zhao H, Zhu Y, et al. 2020. Lignin synthesis mediated by CCoAOMT enzymes is required for the tolerance against excess Cu in Oryza sativa. Environmental and Experimental Botany 175:104059

doi: 10.1016/j.envexpbot.2020.104059
[57]

Lequeux H, Hermans C, Lutts S, Verbruggen N. 2010. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiology and Biochemistry 48:673−82

doi: 10.1016/j.plaphy.2010.05.005
[58]

Liu Q, Zheng L, He F, Zhao F, Shen Z, et al. 2015. Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots. Plant and Soil 387:323−336

doi: 10.1007/s11104-014-2290-7
[59]

Cheng H, Liu Y, Tam NFY, Wang X, Li SY, et al. 2010. The role of radial oxygen loss and root anatomy on zinc uptake and tolerance in mangrove seedlings. Environmental Pollution 158:1189−96

doi: 10.1016/j.envpol.2010.01.025
[60]

Cheng H, Tam NFY, Wang Y, Li S, Chen G, et al. 2012. Effects of copper on growth, radial oxygen loss and root permeability of seedlings of the mangroves Bruguiera gymnorrhiza and Rhizophora stylosa. Plant and Soil 359:255−66

doi: 10.1007/s11104-012-1171-1
[61]

Cheng H, Jiang Z, Liu Y, Ye Z, Wu M, et al. 2014. Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization. Tree Physiology 34:646−56

doi: 10.1093/treephys/tpu042
[62]

Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, et al. 2007. Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L. ) trees. Plant Biology 9:253−64

doi: 10.1055/s-2006-924650
[63]

Liu WG, Hussain S, Liu T, Zou JL, Ren ML, et al. 2019. Shade stress decreases stem strength of soybean through restraining lignin biosynthesis. Journal of Integrative Agriculture 18:43−53

doi: 10.1016/S2095-3119(18)61905-7
[64]

Möller R, Ball RD, Henderson AR, Modzel G, Find J. 2006. Effect of light and activated charcoal on tracheary element differentiation in callus cultures of Pinus radiata D. Don. Plant Cell, Tissue and Organ Culture 85:161−71

doi: 10.1007/s11240-005-9065-z
[65]

Torres CA, Azocar C, Ramos P, Pérez-Díaz R, Sepulveda G, et al. 2020. Photooxidative stress activates a complex multigenic response integrating the phenylpropanoid pathway and ethylene, leading to lignin accumulation in apple (Malus domestica Borkh. ) fruit. Horticulture Research 7:22

doi: 10.1038/s41438-020-0244-1
[66]

Wang Y, Wu X, Sun S, Xing G, Wang G, et al. 2018. DcC4H and DcPER are important in dynamic changes of lignin content in carrot roots under elevated carbon dioxide stress. Journal of Agricultural and Food Chemistry 66:8209−8220

doi: 10.1021/acs.jafc.8b02068
[67]

Richet N, Afif D, Tozo K, Pollet B, Maillard P, et al. 2012. Elevated CO2 and/or ozone modify lignification in the wood of poplars (Populus tremula × alba). Journal of Experimental Botany 63:4291−301

doi: 10.1093/jxb/ers118
[68]

Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E. 2005. Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biology 11:732−48

doi: 10.1111/j.1365-2486.2005.00938.x
[69]

Blaschke L, Forstreuter M, Sheppard LJ, Leith IK, Murray MB, et al. 2002. Lignification in beech (Fagus sylvatica) grown at elevated CO2 concentrations: interaction with nutrient availability and leaf maturation. Tree Physiology 22:469−77

doi: 10.1093/treephys/22.7.469
[70]

Xiao R, Zhang C, Guo X, Li H, Lu H. 2021. MYB transcription factors and its regulation in secondary cell wall formation and lignin biosynthesis during xylem development. International Journal of Molecular Sciences 22:3560

doi: 10.3390/ijms22073560
[71]

Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal TW, et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571−75

doi: 10.1038/nature14099
[72]

Chen H, Wang JP, Liu H, Li H, Lin YCJ, et al. 2019. Hierarchical transcription factor and chromatin binding network for wood formation in Populus trichocarpa. The Plant Cell 31:602−26

doi: 10.1105/tpc.18.00620
[73]

Zhang J, Xie M, Tuskan GA, Muchero W, Chen JG. 2018. Recent advances in the transcriptional regulation of secondary cell wall biosynthesis in the woody plants. Frontiers in Plant Science 9:1535

doi: 10.3389/fpls.2018.01535
[74]

Li C, Ng CKY, Fan L. 2015. MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany 114:80−91

doi: 10.1016/j.envexpbot.2014.06.014
[75]

Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22:6125

doi: 10.3390/ijms22116125
[76]

Shao H, Wang H, Tang X. 2015. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Frontiers in Plant Science 6:902

doi: 10.3389/fpls.2015.00902
[77]

Wang J, Ma Z, Tang B, Yu H, Chen H. 2021. Tartary buckwheat (Fagopyrum tataricum) NAC transcription factors FtNAC16 negatively regulates of pod cracking and salinity tolerant in Arabidopsis. International Journal of Molecular Sciences 22:3197

doi: 10.3390/ijms22063197
[78]

Chen K, Guo Y, Song M, Liu L, Xue H, et al. 2020. Dual role of MdSND1 in the biosynthesis of lignin and in signal transduction in response to salt and osmotic stress in apple. Horticulture Research 7:204

doi: 10.1038/s41438-020-00433-7
[79]

Hu P, Zhang K, Yang C. 2019. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiology 179:700−17

doi: 10.1104/pp.18.01167
[80]

Guo H, Wang Y, Wang L, Hu P, Wang Y, et al. 2017. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnology Journal 15:107−21

doi: 10.1111/pbi.12595
[81]

Zhong R, Lee C, Zhou J, Mccarthy RL, Ye ZH. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant cell 20:2763−82

doi: 10.1105/tpc.108.061325
[82]

Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, et al. 2013. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Letters 587:1773−78

doi: 10.1016/j.febslet.2013.04.028
[83]

Gao S, Zhang Y, Yang L, Song J, Yang Z. 2014. AtMYB20 is negatively involved in plant adaptive response to drought stress. Plant and Soil 376:433−43

doi: 10.1007/s11104-013-1992-6
[84]

Wang Z, Mao Y, Guo Y, Gao J, Liu X, et al. 2020. MYB transcription factor161 mediates feedback regulation of Secondary wall-associated NAC-Domain1 family genes for wood formation. Plant Physiology 184:1389−406

doi: 10.1104/pp.20.01033
[85]

Liu H, Gao J, Sun J, Li S, Zhang B, et al. 2022. Dimerization of PtrMYB074 and PtrWRKY19 mediates transcriptional activation of PtrbHLH186 for secondary xylem development in Populus trichocarpa. New Phytologist 234:918−33

doi: 10.1111/nph.18028
[86]

Sun Y, Zhao J, Li X, Li Y. 2020. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytologist 227:455−72

doi: 10.1111/nph.16538
[87]

Park MY, Kang JY, Kim SY. 2011. Overexpression of AtMYB52 confers ABA hypersensitivity and drought tolerance. Molecules and Cells 31:447−54

doi: 10.1007/s10059-011-0300-7
[88]

Bang SW, Lee DK, Jung H, Chung PJ, Kim YS, et al. 2019. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnology Journal 17:118−31

doi: 10.1111/pbi.12951
[89]

Bang SW, Choi S, Jin X, Jung SE, Choi JW, et al. 2022. Transcriptional activation of rice CINNAMOYL-CoA REDUCTASE 10 by OsNAC5, contributes to drought tolerance by modulating lignin accumulation in roots. Plant Biotechnology Journal 20:736−47

doi: 10.1111/pbi.13752
[90]

Xu W, Tang W, Wang C, Ge L, Sun J, et al. 2020. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Frontiers in Plant Science 11:785

doi: 10.3389/fpls.2020.00785
[91]

Xu C, Fu X, Liu R, Guo L, Ran L, et al. 2017. PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiology 37:1713−1726

doi: 10.1093/treephys/tpx093
[92]

Tian F, Hu XL, Yao T, Yang X, Chen JG, et al. 2021. Recent advances in the roles of HSFs and HSPs in heat stress response in woody plants. Frontiers in Plant Science 12:704905

doi: 10.3389/fpls.2021.704905
[93]

Zhang J, Liu B, Li J, Zhang L, Wang Y, et al. 2015. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 16:181

doi: 10.1186/s12864-015-1398-3
[94]

Zeng J, Li X, Zhang J, Ge H, Yin X, et al. 2016. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant, Cell & Environment 39:1780−89

doi: 10.1111/pce.12741
[95]

Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, et al. 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in Plant Science 7:1029

doi: 10.3389/fpls.2016.01029
[96]

Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, et al. 2012. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. The Plant Cell 24:3823−37

doi: 10.1105/tpc.112.103374
[97]

Zhang Q, Xie Z, Zhang R, Xu P, Liu H, et al. 2018. Blue light regulates secondary cell wall thickening via MYC2/MYC4 activation of the NST1-directed transcriptional network in Arabidopsis. The Plant Cell 30:2512−28

doi: 10.1105/tpc.18.00315
[98]

Zhang J, Yang Y, Zheng K, Xie M, Feng K, et al. 2018. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. New Phytologist 220:502−16

doi: 10.1111/nph.15297
[99]

Zhang J, Li M, Bryan AC, Yoo CG, Rottmann W, et al. 2019. Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop Populus. Sustainable Energy & Fuels 3:195−207

doi: 10.1039/c8se00471d
[100]

Zhang J, Xie M, Li M, Ding J, Pu Y, et al. 2020. Overexpression of a Prefoldin β subunit gene reduces biomass recalcitrance in the bioenergy crop Populus. Plant Biotechnology Journal 18:859−71

doi: 10.1111/pbi.13254