[1] |
Medina-Franco JL, Saldívar-González FI. 2020. Cheminformatics to characterize pharmacologically active natural products. Biomolecules 10:1566 doi: 10.3390/biom10111566 |
[2] |
Fridlender M, Kapulnik Y, Koltai H. 2015. Plant derived substances with anti-cancer activity: From folklore to practice. Frontiers in Plant Science 6:799 doi: 10.3389/fpls.2015.00799 |
[3] |
Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M, et al. 2021. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery 20:200−16 doi: 10.1038/s41573-020-00114-z |
[4] |
Lachance H, Wetzel S, Kumar K, Waldmann H. 2012. Charting, navigating, and populating natural product chemical space for drug discovery. Journal of Medicinal Chemistry 55:5989−6001 doi: 10.1021/jm300288g |
[5] |
Zahavi D, Weiner L. 2020. Monoclonal antibodies in cancer therapy. Antibodies 9:34 doi: 10.3390/antib9030034 |
[6] |
Mattiuzzi C, Sanchis-Gomar F, Lippi G. 2019. Concise update on colorectal cancer epidemiology. Annals of Translational Medicine 7:609 doi: 10.21037/atm.2019.07.91 |
[7] |
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, et al. 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66:683−91 doi: 10.1136/gutjnl-2015-310912 |
[8] |
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, et al. 2020. Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70:145−64 doi: 10.3322/caac.21601 |
[9] |
Zhang L, Yu J. 2013. Role of apoptosis in colon cancer biology, therapy, and prevention. Current Colorectal Cancer Reports 9:331−40 doi: 10.1007/s11888-013-0188-z |
[10] |
Khan T, Ali M, Khan A, Nisar P, Jan SA, et al. 2020. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 10:47 doi: 10.3390/biom10010047 |
[11] |
Shang X, He X, He X, Li M, Zhang R, et al. 2010. The genus Scutellaria an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology 128:279−313 doi: 10.1016/j.jep.2010.01.006 |
[12] |
Brown JM, Attardi LD. 2005. The role of apoptosis in cancer development and treatment response. Nature Reviews Cancer 5:231−37 doi: 10.1038/nrc1560 |
[13] |
Elmore S. 2007. Apoptosis: a review of programmed cell death. Toxicologic Pathology 35:495−516 doi: 10.1080/01926230701320337 |
[14] |
Silke J, Meier P. 2013. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harbor Perspectives in Biology 5:a008730 doi: 10.1101/cshperspect.a008730 |
[15] |
Chung C. 2018. Restoring the switch for cancer cell death: Targeting the apoptosis signaling pathway. American Journal of Health-System Pharmacy 75:945−52 doi: 10.2146/ajhp170607 |
[16] |
Rathore R, McCallum JE, Varghese E, Florea AM, Büsselberg D. 2017. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (IAPs). Apoptosis 22:898−919 doi: 10.1007/s10495-017-1375-1 |
[17] |
Obexer P, Ausserlechner MJ. 2014. X-linked inhibitor of apoptosis protein – a critical death-resistance regulator and therapeutic target for personalized cancer therapy. Frontiers in Oncology 4:197 doi: 10.3389/fonc.2014.00197 |
[18] |
De Almagro MC, Vucic D. 2012. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Experimental Oncology 34:200−11 |
[19] |
Debatin KM. 2004. Apoptosis pathways in cancer and cancer therapy. Cancer Immunology, Immunotherapy 53:153−59 doi: 10.1007/s00262-003-0474-8 |
[20] |
Wong RSY. 2011. Apoptosis in cancer: from pathogenesis to treatment. Journal of Experimental & Clinical Cancer Research 30:87 doi: 10.1186/1756-9966-30-87 |
[21] |
Cui M, Lu A, Li J, Liu J, Fang Y, et al. 2021. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4′-deoxyflavones in Scutellaria baicalensis Georgi. Plant Biotechnology Journal 20:129−42 doi: 10.1111/pbi.13700 |
[22] |
Zhao Q, Cui M, Levsh O, Yang D, Liu J, et al. 2018. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4′-deoxyflavones in Scutellaria baicalensis. Molecular Plant 11:135−48 doi: 10.1016/j.molp.2017.08.009 |
[23] |
Huchelmann A, Boutry M, Hachez C. 2017. Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiology 175:6−22 doi: 10.1104/pp.17.00727 |
[24] |
Fahn A. 2000. Structure and function of secretory cells. Advances in Botanical Research 31:37−75 doi: 10.1016/S0065-2296(00)31006-0 |
[25] |
Wang M, Ma C, Chen Y, Li X, Chen J. 2019. Cytotoxic Neo-clerodane diterpenoids from Scutellaria barbata D. Don. Chemistry and Biodiversity 16:e1800499 doi: 10.1002/cbdv.201800499 |
[26] |
Wheatley SP, Altieri DC. 2019. Survivin at a glance. Journal of Cell Science 132:jcs223826 doi: 10.1242/jcs.223826 |
[27] |
Cong H, Xu L, Wu Y, Qu Z, Bian T, et al. 2019. Inhibitor of Apoptosis Protein (IAP) antagonists in anticancer agent discovery: current status and perspectives. Journal of Medicinal Chemistry 62:5750−72 doi: 10.1021/acs.jmedchem.8b01668 |
[28] |
Meunier V, Bourrié M, Berger Y, Fabre G. 1995. The human intestinal epithelial cell line Caco-2; pharmacological and pharmacokinetic applications. Cell Biology and Toxicology 11:187−94 doi: 10.1007/BF00756522 |
[29] |
Gavhane YN, Yadav AV. 2012. Loss of orally administered drugs in GI tract. Saudi Pharmaceutical Journal 20:331−44 doi: 10.1016/j.jsps.2012.03.005 |
[30] |
Gartel AL, Tyner AL. 2002. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Molecular Cancer Therapeutics 1:639−49 |
[31] |
Garg H, Suri P, Gupta JC, Talwar GP, Dubey S. 2016. Survivin: A unique target for tumor therapy. Cancer Cell International 16:49 doi: 10.1186/s12935-016-0326-1 |
[32] |
Smolewski P, Robak T. 2011. Inhibitors of apoptosis proteins (IAPs) as potential molecular targets for therapy of hematological malignancies. Current Molecular Medicine 11:633−49 doi: 10.2174/156652411797536723 |
[33] |
Wei D, Li C, Ye J, Xiang F, Xu Y, Liu J. 2021. Codelivery of survivin inhibitor and chemotherapeutics by tumor-derived microparticles to reverse multidrug resistance in osteosarcoma. Cell Biology International 45:382−93 doi: 10.1002/cbin.11494 |
[34] |
Myung DS, Park YL, Chung CY, Park HC, Kim JS, et al. 2013. Expression of Livin in colorectal cancer and its relationship to tumor cell behavior and prognosis. PloS One 8:e73262 doi: 10.1371/journal.pone.0073262 |
[35] |
Liu S, Li X, Li Q, Liu H, Shi Y, et al. 2018. Silencing Livin improved the sensitivity of colon cancer cells to 5-fluorouracil by regulating crosstalk between apoptosis and autophagy. Oncology Letters 15:7707−15 doi: 10.3892/ol.2018.8282 |
[36] |
Feng P, Qi Y, Li N, Fei H. 2021. Scutebarbatine A induces cytotoxicity in hepatocellular carcinoma via activation of the MAPK and ER stress signaling pathways. Journal of Biochemical and Molecular Toxicology 35:e22731 doi: 10.1002/jbt.22731 |
[37] |
Yang X, Xu M, Xu G, Zhang Y, Xu Z. 2014. In vitro and in vivo antitumor activity of scutebarbatine a on human lung carcinoma A549 cell lines. Molecules 19:8740−51 doi: 10.3390/molecules19078740 |
[38] |
Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, et al. 2008. Heat shock proteins: Essential proteins for apoptosis regulation: Apoptosis Review Series. Journal of Cellular and Molecular Medicine 12:743−61 doi: 10.1111/j.1582-4934.2008.00273.x |
[39] |
Ghosh JC, Dohi T, Kang BH, Altieri DC. 2008. Hsp60 regulation of tumor cell apoptosis. Journal of Biological Chemistry 283:5188−94 doi: 10.1074/jbc.M705904200 |
[40] |
Bach LA. 2015. Recent insights into the actions of IGFBP-6. Journal of Cell Communication and Signaling 9:189−200 doi: 10.1007/s12079-015-0288-4 |
[41] |
Vigneri PG, Tirrò E, Pennisi MS, Massimino M, Stella S, et al. 2015. The insulin/IGF system in colorectal cancer development and resistance to therapy. Frontiers in Oncology 5:230 doi: 10.3389/fonc.2015.00230 |
[42] |
Chen S, Fu L, Raja SM, Yue P, Khuri FR, et al. 2010. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of Geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Molecular Cancer 9:23 doi: 10.1186/1476-4598-9-23 |
[43] |
Wang L, Chen W, Li M, Zhang F, Chen K, et al. 2020. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. Journal of Ethnopharmacology 254:112260 doi: 10.1016/j.jep.2019.112260 |
[44] |
Chen CC, Kao CP, Chiu MM, Wang SH. 2017. The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget 8:109340−57 doi: 10.18632/oncotarget.22677 |
[45] |
Jiang Q, Li Q, Chen H, Shen A, Cai Q, et al. 2015. Scutellaria barbata D. Don inhibits growth and induces apoptosis by suppressing IL-6-inducible STAT3 pathway activation in human colorectal cancer cells. Experimental and Therapeutic Medicine 10:1602−8 doi: 10.3892/etm.2015.2692 |
[46] |
Perez AT, Arun B, Tripathy D, Tagliaferri MA, Shaw HS, et al. 2010. A phase 1B dose escalation trial of Scutellaria barbata (BZL101) for patients with metastatic breast cancer. Breast Cancer Research and Treatment 120:111−18 doi: 10.1007/s10549-009-0678-5 |
[47] |
Gao J, Yin W, Corcoran O. 2019. From Scutellaria barbata to BZL101 in Cancer Patients: Phytochemistry, Pharmacology, and Clinical Evidence. Natural Product Communications 14:1934578X1988064 doi: 10.1177/1934578x19880645 |
[48] |
Rugo H, Shtivelman E, Perez A, Vogel C, Franco S, et al. 2007. Phase I trial and antitumor effects of BZL101 for patients with advanced breast cancer. Breast Cancer Research and Treatment 105:17−28 doi: 10.1007/s10549-006-9430-6 |
[49] |
Zhang L, Cai Q, Lin J, Fang Y, Zhan Y, et al. 2014. Chloroform fraction of Scutellaria barbata D. Don promotes apoptosis and suppresses proliferation in human colon cancer cells. Molecular Medicine Reports 9:701−6 doi: 10.3892/mmr.2013.1864 |
[50] |
Fong S, Shoemaker M, Cadaoas J, Lo A, Liao W, et al. 2008. Molecular mechanisms underlying selective cytotoxic activity of BZL101, an extract of Scutellaria barbata, towards breast cancer cells. Cancer Biology & Therapy 7:577−86 doi: 10.4161/cbt.7.4.5535 |
[51] |
Marconett CN, Morgenstern TJ, San Roman AK, Sundar SN, Singhal AK, et al. 2010. BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype. Cancer Biology & Therapy 10:397−405 doi: 10.4161/cbt.10.4.12424 |
[52] |
Chen V, Staub RE, Baggett S, Chimmani R, Tagliaferri M, et al. 2012. Identification and analysis of the active phytochemicals from the Anti-Cancer botanical extract Bezielle. PLoS One 7:e30107 doi: 10.1371/journal.pone.0030107 |
[53] |
Dai S, Peng W, Shen L, Zhang D, Ren Y. 2009. Two new neo-clerodane diterpenoid alkaloids from Scutellaria barbata with cytotoxic activities. Journal of Asian Natural Products Research 11:451−56 doi: 10.1080/10286020902845652 |
[54] |
Dai S, Peng W, Zhang D, Shen L, Wang W, et al. 2009. Cytotoxic neo-clerodane diterpenoid alkaloids from Scutellaria barbata. Journal of Natural Products 72:1793−97 doi: 10.1021/np900362z |
[55] |
Dai S, Tao J, Liu K, Jiang Y, Shen L. 2006. neo-Clerodane diterpenoids from Scutellaria barbata with cytotoxic activities. Phytochemistry 67:1326−30 doi: 10.1016/j.phytochem.2006.04.024 |
[56] |
Dai S, Wang G, Chen M, Liu K, Shen L. 2007. Five new neo-clerodane diterpenoid alkaloids from Scutellaria barbata with cytotoxic activities. Chemical & Pharmaceutical Bulletin 55:1218−21 doi: 10.1248/cpb.55.1218 |
[57] |
Wang M, Chen Y, Hu P, Ji J, Li X, Chen J. 2020. Neoclerodane diterpenoids from Scutellaria barbata with cytotoxic activities. Natural Product Research 34:1345−51 doi: 10.1080/14786419.2018.1514399 |
[58] |
Zhu F, Di Y, Li X, Liu L, Zhang Q, et al. 2011. Neoclerodane diterpenoids from Scutellaria barbata. Planta Medica 77:1536−41 doi: 10.1055/s-0030-1270797 |
[59] |
Xu H, Yu J, Sun Y, Xu X, Li L, et al. 2013. Scutellaria barbata D. Don extract synergizes the antitumor effects of low dose 5-fluorouracil through induction of apoptosis and metabolism. Phytomedicine 20:897−903 doi: 10.1016/j.phymed.2013.03.025 |
[60] |
Lu D, Chen E, Wu H, Lu T, Xu B, et al. 2017. Anticancer drug combinations, how far we can go through? Anti-Cancer Agents in Medicinal Chemistry 17:21−28 doi: 10.2174/1871520616666160404112028 |
[61] |
Wong BYY, Lau BHS, Jia TY, Wan CP. 1996. Oldenlandia diffusa and Scutellaria barbata augment macrophage oxidative burst and inhibit tumor growth. Cancer Biotherapy & Radiopharmaceuticals 11:51−56 doi: 10.1089/cbr.1996.11.51 |
[62] |
Chen Q, Rahman K, Wang S, Zhou S, Zhang H. 2020. Scutellaria barbata: A review on chemical constituents, pharmacological activities and clinical applications. Current Pharmaceutical Design 26:160−75 doi: 10.2174/1381612825666191216124310 |
[63] |
Chen M, Wang J, Gao H, Lei S, Zhu Y. 2017. Total flavonoids in Scutellaria barbata prevents NLRP3 inflammasome expression in tumor cells by affecting autologous pathway. China Journal of Chinese Materia Medica 42:4841−46 doi: 10.19540/j.cnki.cjcmm.20171010.003 |
[64] |
Yu J, Liu H, Lei J, Tan W, Hu X, et al. 2007. Antitumor activity of chloroform fraction of Scutellaria barbata and its active constituents. Phytotherapy Research 21:817−22 doi: 10.1002/ptr.2062 |
[65] |
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, et al. 2014. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science & Technology 48:2097−98 doi: 10.1021/es5002105 |