[1] |
Merchant ME, Gu M, Robbins J, Vafaie E, Barr N, et al. 2014. Discovery and spread of Eriococcus lagerstroemiae Kuwana (Hemiptera: Eriococcidae), a new invasive pest of crape myrtle, Lagerstroemia spp. https://bugwoodcloud.org/resource/pdf/ESAPosterDiscovAndSpread2014.pdf |
[2] |
Gu M, Merchant M, Robbins J, Hopkins J. 2014. Crape myrtle bark scale: A new exotic pest. https://cdn-ext.agnet.tamu.edu/wp-content/uploads/2018/10/EHT-049-crape-myrtle-bark-scale-a-new-exotic-pest.pdf |
[3] |
EDDMapS. 2021. Early Detection & Distribution Mapping System. https://www.eddmaps.org/distribution/viewmap.cfm?sub=80722 |
[4] |
Gill S. 2021. Crapemyrtle bark scale: Now in Maryland. https://extension.umd.edu/resource/crapemyrtle-bark-scale |
[5] |
Kalaman H. 2021. Crape myrtle bark scale (Acanthococcus lagerstroemia) recently discovered in Florida. http://blogs.ifas.ufl.edu/pestalert/2021/05/23/crape-myrtle-bark-scale-acanthococcus-lagerstroemia-recently-discovered-in-florida/ |
[6] |
Merchant M, Garcia J, Gu M. 2018. Longevity of imidacloprid as a soil treatment for crapemyrtle bark scale on crapemyrtle, 2016–2017. Arthropod Management Tests 43:tsy012 doi: 10.1093/amt/tsy012 |
[7] |
Wang Z, Chen Y, Gu M, Vafaie E, Merchant M, et al. 2016. Crapemyrtle bark scale: A new threat for crapemyrtles, a popular landscape plant in the U. S. Insects 7:78 doi: 10.3390/insects7040078 |
[8] |
Xie R, Wu B, Dou H, Liu C, Knox GW, et al. 2020. Feeding preference of crapemyrtle bark scale (Acanthococcus lagerstroemiae) on different species. Insects 11:399 doi: 10.3390/insects11070399 |
[9] |
Wu B, Xie R, Knox GW, Qin H, Gu M. 2021. Host suitability for crapemyrtle bark scale (Acanthococcus lagerstroemiae) differed significantly among crapemyrtle species. Insects 12:6 doi: 10.3390/insects12010006 |
[10] |
Wu B, Xie R, Knox GW, Qin H, Gu M. 2022. Evaluating beautyberry and fig species as potential hosts of invasive crapemyrtle bark scale in the United States. HortTechnology 32:10−15 doi: 10.21273/HORTTECH04897-21 |
[11] |
Xie R, Wu B, Gu M, Jones SR, Robbins J, et al. 2021. Confirmation of New Crapemyrtle Bark Scale (Acanthococcus lagerstroemiae) Hosts (Spiraea and Callicarpa) through DNA Barcoding. HortScience 56:1549−51 doi: 10.21273/HORTSCI16151-21 |
[12] |
Schultz PB, Szalanski AL. 2019. Hypericum kalmianum (St. Johnswort) confirmed as a new host of the crapemyrtle bark scale in Virginia, USA. Journal of Agricultural and Urban Entomology 35:12−14 doi: 10.3954/1523-5475-35.1.12 |
[13] |
Hall CR, Hodges AW, Haydu JJ. 2006. The economic impact of the green industry in the United States. HortTechnology 16:345−53 doi: 10.21273/HORTTECH.16.2.0345 |
[14] |
Harrington RA, Kujawski R, Ryan HDP. 2003. Invasive plants and the green industry. Journal of Arboriculture 29:42−48 doi: 10.48044/jauf.2003.006 |
[15] |
Bergmann EJ, Venugopal PD, Martinson HM, Raupp MJ, Shrewsbury PM. 2016. Host plant use by the invasive Halyomorpha halys (Stål) on woody ornamental trees and shrubs. PLoS One 11:e0149975 doi: 10.1371/journal.pone.0149975 |
[16] |
Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, et al. 2016. Massive yet grossly underestimated global costs of invasive insects. Nature Communications 7:12986 doi: 10.1038/ncomms12986 |
[17] |
Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Péré C, et al. 2009. Ecological effects of invasive alien insects. Biological Invasions 11:21−45 doi: 10.1007/s10530-008-9318-y |
[18] |
Jiang N, Xu H. 1998. Observation on Eriococcus lagerostroemiae Kuwana. Journal of Anhui Agricultural University 2:142−44 |
[19] |
Thurmond AA. 2019. Defining and mitigating the impacts of Acanthococcus lagerstroemiae (Hemiptera: Eriococcidae) management on pollinators. Master's Thesis. Auburn University, USA. http://hdl.handle.net/10415/7059 |
[20] |
Riddle TC, Mizell III RF. 2016. Use of crape myrtle, Lagerstroemia (Myrtales: Lythraceae), cultivars as a pollen source by native and non-native bees (Hymenoptera: Apidae) in Quincy, Florida. Florida Entomologist 99:38−46 doi: 10.1653/024.099.0108 |
[21] |
Braman SK, Quick JC. 2018. Differential bee attraction among crape myrtle cultivars (Lagerstroemia spp. : Myrtales: Lythraceae). Environmental Entomology 47:1203−8 doi: 10.1093/ee/nvy117 |
[22] |
Lau P, Bryant V, Ellis JD, Huang ZY, Sullivan J, et al. 2019. Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States. PLoS One 14:e0217294 doi: 10.1371/journal.pone.0217294 |
[23] |
Bolques A, Knox G. 1997. Growth and flowering phenology of six crape myrtle cultivars in north Florida. Proc. Southern Nursery Association Conference Proceedings, 1997, 42: 365−68. https://sna1.wildapricot.org/Resources/Documents/97resprocsec10.pdf |
[24] |
Pounders CT, Blythe EK, Fare DC, Knox GW, Sibley JL. 2010. Crapemyrtle genotype × environment interactions, and trait stability for plant height, leaf-out, and flowering. HortScience 45:198−207 doi: 10.21273/HORTSCI.45.2.198 |
[25] |
Van der Sluijs JP, Simon-Delso N, Goulson D, Maxim L, Bonmatin JM, et al. 2013. Neonicotinoids, bee disorders and the sustainability of pollinator services. Current Opinion in Environmental Sustainability 5:293−305 doi: 10.1016/j.cosust.2013.05.007 |
[26] |
Gill RJ, Ramos-Rodriguez O, Raine NE. 2012. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491:105−8 doi: 10.1038/nature11585 |
[27] |
Wang Z, Chen Y, Diaz R. 2016. The cactus lady beetle: a voracious predator of scale insects. Bug Biz 3480:11−15 |
[28] |
Tauber MJ, Tauber CA. 1983. Life history traits of Chrysopa cornea and Chrysopa rufilabris (Neuroptera: Chrysopidae): influence of humidity. Annals of the Entomological Society of America 76:282−85 doi: 10.1093/aesa/76.2.282 |
[29] |
Agnew C, Sterling W, Dean D. 1981. Notes on the Chrysopidae and Hemerobiidae of eastern Texas with keys for their identification [Phytoparasitic pests, taxonomy]. Southwest Entomology (USA) 4:1−20 |
[30] |
Hydorn S. 1971. Food preferences of Chrysopa rufilabris Burmeister in central Florida. Master's Thesis. University of Florida, Gainesville, FL |
[31] |
Smith RC. 1922. The biology of the Chrysopidae. Cornell University |
[32] |
Tauber MJ, Tauber CA, Daane KM, Hagen KS. 2000. Commercialization of predators: recent lessons from green lacewings (Neuroptera: Chrysopidae: Chrosoperla). American Entomologist 46:26−38 doi: 10.1093/ae/46.1.26 |
[33] |
Jessie CN, Giles KL, Royer TA, Payton ME, Elliott NC, et al. 2019. Suitability of Schizaphis graminum parasitized by Lysiphlebus testaceipes as intraguild prey for Chrysoperla rufilabris. Southwestern Entomologist 44:21−33 doi: 10.3958/059.044.0103 |
[34] |
Hydorn SB, Whitcomb WH. 1979. Effects of larval diet on Chrysopa rufilabris. The Florida Entomologist 62:293−98 doi: 10.2307/3493982 |
[35] |
Chen T, Liu T. 2001. Relative consumption of three aphid species by the lacewing, Chrysoperla rufilabris, and effects on its development and survival. BioControl 46:481−91 doi: 10.1023/A:1014115906698 |
[36] |
Nordlund DA, Morrison RK. 1990. Handling time, prey preference, and functional response for Chrysoperla rufilabris in the laboratory. Entomologia Experimentalis et Applicata 57:237−42 doi: 10.1111/j.1570-7458.1990.tb01435.x |
[37] |
Daane K. 2001. Ecological studies of released lacewings in crops. In Lacewings in the Crop Environment, eds. McEwen PK, New TR, Whittington AE. New York, USA: Cambridge University Press. pp. 338−50 https://doi.org/10.1017/CBO9780511666117.017 |
[38] |
Kunkel BA, Cottrell TE. 2014. Oviposition response of green lacewings (Neuroptera: Chrysopidae) to aphids (Hemiptera: Aphididae) and potential attractants on pecan. Environmental Entomology 36:577−83 doi: 10.1603/0046-225X(2007)36[577:OROGLN]2.0.CO;2 |
[39] |
Gautam S, Singh AK, Gautam RD. 2010. Olfactory responses of green lacewings, Chrysoperla sp (carnea group) and Mallada desjardinsi on mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae) fed on cotton. Acta Entomologica Sinica 53:497−507 doi: 10.16380/j.kcxb.2010.05.008 |
[40] |
Zhu J, Cossé AA, Obrycki JJ, Boo KS, Baker TC. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: electroantennogram and behavioral responses. Journal of Chemical Ecology 25:1163−77 doi: 10.1023/A:1020846212465 |
[41] |
Bond AB. 1980. Optimal foraging in a uniform habitat: the search mechanism of the green lacewing. Animal Behaviour 28:10−19 doi: 10.1016/S0003-3472(80)80003-0 |
[42] |
Bond AB. 1983. The foraging behaviour of lacewing larvae on vertical rods. Animal Behaviour 31:990−1004 doi: 10.1016/S0003-3472(83)80004-9 |
[43] |
Clark TL, Messina FJ. 1998. Foraging behavior of lacewing larvae (Neuroptera: Chrysopidae) on plants with divergent architectures. Journal of Insect Behavior 11:303−17 doi: 10.1023/A:1020979112407 |
[44] |
Magro A, Téné JN, Bastin N, Dixon AFG, Hemptinne JL. 2007. Assessment of patch quality by ladybirds: relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity. Chemoecology 17:37−45 doi: 10.1007/s00049-006-0357-5 |
[45] |
Mishra G, Singh N, Shahid M, Omkar. 2012. Effect of presence and semiochemicals of conspecific stages on oviposition by ladybirds (Coleoptera: Coccinellidae). European Journal of Entomology 109:363−71 doi: 10.14411/eje.2012.047 |
[46] |
Cui L, Dong J, Francis F, Liu Y, Heuskin S, et al. 2012. E-β-farnesene synergizes the influence of an insecticide to improve control of cabbage aphids in China. Crop Protection 35:91−96 doi: 10.1016/j.cropro.2012.01.003 |
[47] |
Liu J, Zhao X, Zhan Y, Wang K, Francis F, et al. 2021. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. Pest Management Science 77:3341−48 doi: 10.1002/ps.6378 |
[48] |
Prosser WA, Douglas AE. 1992. A test of the hypotheses that nitrogen is upgraded and recycled in an aphid (Acyrthosiphon pisum) symbiosis. Journal of Insect Physiology 38:93−99 doi: 10.1016/0022-1910(92)90037-E |
[49] |
Simonnet MM, Berthelot-Grosjean M, Grosjean Y. 2014. Testing Drosophila olfaction with a Y-maze assay. Journal of Visualized Experiments 2014:51241 doi: 10.3791/51241 |
[50] |
Vafaie E, Merchant M, Cai X, Hopkins JD, Robbins JA, et al. 2020. Seasonal population patterns of a new scale pest, Acanthococcus lagerstroemiae Kuwana (Hemiptera: Sternorrhynca: Eriococcidae), of crapemyrtles in Texas, Louisiana, and Arkansas. Journal of Environmental Horticulture 38:8−14 doi: 10.24266/0738-2898-38.1.8 |
[51] |
Cardinale BJ, Harvey CT, Gross K, Ives AR. 2003. Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecology Letters 6:857−65 doi: 10.1046/j.1461-0248.2003.00508.x |
[52] |
Prasad RP, Snyder WE. 2006. Polyphagy complicates conservation biological control that targets generalist predators. Journal of Applied Ecology 43:343−52 doi: 10.1111/j.1365-2664.2006.01129.x |
[53] |
Snyder WE, Wise DH. 1999. Predator interference and the establishment of generalist predator populations for biocontrol. Biological Control 15:283−92 doi: 10.1006/bcon.1999.0723 |