[1] |
Liu X, Guo J, Wan Z, Liu Y, Ruan Q, et al. 2018. Wheat gluten-stabilized high internal phase emulsions as mayonnaise replacers. Food Hydrocolloids 77:168−75 doi: 10.1016/j.foodhyd.2017.09.032 |
[2] |
Narsimhan G, Wang Z, Xiang N. 2019. Guidelines for Processing Emulsion-Based Foods. In Food Emulsifiers and Their Applications, eds. Hasenhuettl G, Hartel R. Switzerland: Springer, Cham. pp. 435−501. https://doi.org/10.1007/978-3-030-29187-7_15 |
[3] |
Wang A, Xiao Z, Wang J, Li G, Wang L. 2020. Fabrication and characterization of emulsion stabilized by table egg-yolk granules at different pH levels. Journal of the Science of Food and Agriculture 100:1470−78 doi: 10.1002/jsfa.10154 |
[4] |
Anton M. 2013. Egg yolk: structures, functionalities and processes. Journal of the Science of Food and Agriculture 93:2871−80 doi: 10.1002/jsfa.6247 |
[5] |
Lu Z, Zhou S, Ye F, Zhou G, Gao R, et al. 2021. A novel cholesterol-free mayonnaise made from Pickering emulsion stabilized by apple pomace particles. Food Chemistry 353:129418 doi: 10.1016/j.foodchem.2021.129418 |
[6] |
Dolz M, Hernandez M, Delegido J. 2006. Oscillatory measurements for salad dressings stabilized with modified starch, xanthan gum, and locust bean gum. Journal of Applied Polymer Science 102:897−903 doi: 10.1002/app.24125 |
[7] |
Le Denmat M, Anton M, Beaumal V. 2000. Characterisation of emulsion properties and of interface composition in O/W emulsions prepared with hen egg yolk, plasma and granules. Food Hydrocolloids 14:539−49 doi: 10.1016/S0268-005X(00)00034-5 |
[8] |
Hatta H, Kim M, Yamamoto T. 1990. A novel isolation method for hen egg yolk antibody, “IgY”. Agricultural and Biological Chemistry 54:2531−35 doi: 10.1080/00021369.1990.10870349 |
[9] |
Chang HM, Lu TC, Chen CC, Tu YY, Hwang JY. 2000. Isolation of immunoglobulin from egg yolk by anionic polysaccharides. Journal of Agricultural and Food Chemistry 48:995−99 doi: 10.1021/jf990539k |
[10] |
Laca A, Paredes B, Rendueles M, Díaz M. 2014. Egg yolk granules: Separation, characteristics and applications in food industry. LWT - Food Science and Technology 59:1−5 doi: 10.1016/j.lwt.2014.05.020 |
[11] |
Anton M, Gandemer G. 1997. Composition, solubility and emulsifying properties of granules and plasma of egg yolk. Journal of Food Science 62:484−87 doi: 10.1111/j.1365-2621.1997.tb04411.x |
[12] |
Anton M, Martinet V, Dalgalarrondo M, Beaumal V, David-Briand E, et al. 2003. Chemical and structural characterisation of low-density lipoproteins purified from hen egg yolk. Food Chemistry 83:175−83 doi: 10.1016/S0308-8146(03)00060-8 |
[13] |
Barickman TC, Horgan TE, Wheeler JR, Sams CE. 2016. Elevated levels of potassium in greenhouse-grown red romaine lettuce impacts mineral nutrient and soluble sugar concentrations. HortScience 51:504−9 doi: 10.21273/HORTSCI.51.5.504 |
[14] |
Masson P, Dalix T. 2016. Comparison of Open Digestion Methods for the Determination of Rare Earth Elements in Plant Samples by ICP-MS. Communications in Soil Science and Plant Analysis 47:1866−74 doi: 10.1080/00103624.2016.1206912 |
[15] |
Gallier S, Gragson D, Jiménez-Flores R, Everett D. 2010. Using confocal laser scanning microscopy to probe the milk fat globule membrane and associated proteins. Journal of Agricultural and Food Chemistry 58:4250−57 doi: 10.1021/jf9032409 |
[16] |
Anton M, Denmat ML, Gandemer G. 2000. Thermostability of hen egg yolk granules: Contribution of native structure of granules. Journal of Food Science 65:581−84 doi: 10.1111/j.1365-2621.2000.tb16052.x |
[17] |
Markwell MAK, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87:206−10 doi: 10.1016/0003-2697(78)90586-9 |
[18] |
Nwachukwu ID, Aluko RE. 2019. A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chemistry 270:25−31 doi: 10.1016/j.foodchem.2018.07.054 |
[19] |
Kim MR, Shim JY, Park KH, Imm BY, Oh S, et al. 2009. Optimization of the enzymatic modification of egg yolk by phospholipase A2 to improve its functionality for mayonnaise production. LWT - Food Science and Technology 42:250−55 doi: 10.1016/j.lwt.2008.05.014 |
[20] |
Primacella M, Wang T, Acevedo NC. 2019. Characterization of mayonnaise properties prepared using frozen-thawed egg yolk treated with hydrolyzed egg yolk proteins as anti-gelator. Food Hydrocolloids 96:529−36 doi: 10.1016/j.foodhyd.2019.06.008 |
[21] |
Huang L, Wang T, Han Z, Meng Y, Lu X. 2016. Effect of egg yolk freezing on properties of mayonnaise. Food Hydrocolloids 56:311−17 doi: 10.1016/j.foodhyd.2015.12.027 |
[22] |
Liu H, Xu X, Guo S. 2007. Rheological, texture and sensory properties of low-fat mayonnaise with different fat mimetics. LWT - Food Science and Technology 40:946−54 doi: 10.1016/j.lwt.2006.11.007 |
[23] |
Ghazaei S, Mizani M, Piravi-Vanak Z, Alimi M. 2015. Particle size and cholesterol content of a mayonnaise formulated by OSA-modified potato starch. Food science and technology 35:150−6 doi: 10.1590/1678-457X.6555 |
[24] |
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671−75 doi: 10.1038/nmeth.2089 |
[25] |
Raval N, Maheshwari R, Kalyane D, Youngren-Ortiz SR, Chougule MB, Tekade RK. 2019. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development. In Basic Fundamentals of Drug Delivery, ed. Tekade RK. Academic Press, Elsevier. pp. 369−400. |
[26] |
Paraskevopoulou A, Kiosseoglou V, Alevisopoulos S, Kasapis S. 1999. Influence of reduced-cholesterol yolk on the viscoelastic behaviour of concentrated O/W emulsions. Colloids and Surfaces B: Biointerfaces 12:107−11 doi: 10.1016/S0927-7765(98)00067-8 |
[27] |
McClements DJ. 2015. Food Emulsions: Principles, Practices, and Techniques. 3rd edition. Boca Raton: CRC press. https://doi.org/10.1201/b18868 |
[28] |
Huan Y, Zhang S, Vardhanabhuti B. 2016. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions. Journal of Dairy Science 99:3305−15 doi: 10.3168/jds.2015-10278 |
[29] |
Du B, Li J, Zhang H, Huang L, Chen P, et al. 2009. Influence of molecular weight and degree of substitution of carboxymethylcellulose on the stability of acidified milk drinks. Food Hydrocolloids 23:1420−6 doi: 10.1016/j.foodhyd.2008.10.004 |
[30] |
Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, et al. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57 doi: 10.3390/pharmaceutics10020057 |
[31] |
Mine Y. 1998. Emulsifying characterization of hens egg yolk proteins in oil-in-water emulsions. Food Hydrocolloids 12:409−15 doi: 10.1016/S0268-005X(98)00054-X |
[32] |
Bringe NA, Howard DB, Clark DR. 1996. Emulsifying properties of low-fat, low-cholesterol egg yolk prepared by supercritical CO2 extraction. Journal of food science 61:19−23 doi: 10.1111/j.1365-2621.1996.tb14717.x |
[33] |
Mizutani R, Nakamura R. 1987. Emulsifying properties of a complex between apoprotein from hen’s egg yolk low density lipoprotein and egg yolk lecithin. Agricultural and Biological Chemistry 51:1115−19 doi: 10.1080/00021369.1987.10868169 |
[34] |
Mottola M, Vico RV, Villanueva ME, Fanani ML. 2015. Alkyl esters of L-ascorbic acid: Stability, surface behaviour and interaction with phospholipid monolayers. Journal of Colloid and Interface Science 457:232−42 doi: 10.1016/j.jcis.2015.07.014 |
[35] |
van Nieuwenhuyzen W, Szuhaj BF. 1998. Effects of lecithins and proteins on the stability of emulsions. Lipid - Fett 100:282−91 doi: 10.1002/(sici)1521-4133(199807)100:7<282::aid-lipi282>3.0.co;2-w |
[36] |
Li J, Li Y, Guo S. 2014. The binding mechanism of lecithin to soybean 11S and 7S globulins using fluorescence spectroscopy. Food Science and Biotechnology 23:1785−91 doi: 10.1007/s10068-014-0244-8 |
[37] |
Anton M. 2006. Recent advances concerning the functional properties of egg yolk low-density lipoproteins. Proceedings of the EPC Proceedings of 12th European Poultry Conference, Verona, Italy, 2006. pp. 10−14 |
[38] |
Anton M. 2007. Composition and structure of hen egg yolk. In Bioactive Egg Compounds, eds. Huopalahti R, López-Fandiño R, Anton M, Schade R. Heidelberg: Springer, Berlin, Heidelberg. pp. 1−6 https://doi.org/10.1007/978-3-540-37885-3_1 |
[39] |
Causeret D, Matringe E, Lorient D. 1991. Ionic strength and pH effects on composition and microstructure of yolk granules. Journal of Food Science 56:1532−36 doi: 10.1111/j.1365-2621.1991.tb08634.x |
[40] |
Causeret D, Matringe E, Lorient D. 1992. Mineral cations affect microstructure of egg yolk granules. Journal of Food Science 57:1323−26 doi: 10.1111/j.1365-2621.1992.tb06847.x |
[41] |
Larsson M, Duffy J. 2013. An overview of measurement techniques for determination of yield stress. Annual Transactions of the Nordic Rheology Society 21:125−38 |
[42] |
Ma L, Barbosa-Cánovas GV. 1995. Rheological characterization of mayonnaise. Part II: Flow and viscoelastic properties at different oil and xanthan gum concentrations. Journal of Food Engineering 25:409−25 doi: 10.1016/0260-8774(94)00010-7 |
[43] |
Poslinski AJ, Ryan ME, Gupta RK, Seshadri SG, Frechette FJ. 1988. Rheological behavior of filled polymeric systems I. yield stress and shear-thinning effects. Journal of Rheology 32:703−35 doi: 10.1122/1.549987 |
[44] |
Juszczak L, Fortuna T, Kośla A. 2003. Sensory and rheological properties of Polish commercial mayonnaise. Food/Nahrung 47:232−5 doi: 10.1002/food.200390054 |
[45] |
Rapp BE. 2017. Fluids. In Microfluidics: Modeling, Mechanics and Mathematics. Oxford: Elsevier. pp 243−63. https://doi.org/10.1016/C2012-0-02230-2 |
[46] |
Steffe J. 1992. Yield stress: phenomena and measurement. In Advances in Food Engineering, eds. Singh RP, Wirakartakusumah MA. Boca Raton, FL: CRC Press. pp. 363−76 |
[47] |
Mason TG, Lacasse M-D, Grest GS, Levine D, Bibette J, Weitz DA. 1997. Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Physical Review E 56:3150−66 doi: 10.1103/physreve.56.3150 |
[48] |
Peressini D, Sensidoni A, de Cindio B. 1998. Rheological characterization of traditional and light mayonnaises. Journal of Food Engineering 35:409−17 doi: 10.1016/S0260-8774(98)00032-6 |
[49] |
Gabriele D, de Cindio B, D'Antona P. 2001. A weak gel model for foods. Rheologica Acta 40:120−27 doi: 10.1007/s003970000139 |
[50] |
Bohlin L. 1980. A theory of flow as a cooperative phenomenon. Journal of Colloid and Interface Science 74:423−34 doi: 10.1016/0021-9797(80)90211-8 |
[51] |
Laca A, Paredes B, Díaz M. 2010. A method of egg yolk fractionation. Characterization of fractions. Food Hydrocolloids 24:434−43 doi: 10.1016/j.foodhyd.2009.11.010 |
[52] |
Goodarzi F, Zendehboudi S. 2019. A comprehensive review on emulsions and emulsion stability in chemical and energy industries. The Canadian Journal of Chemical Engineering 97:281−309 doi: 10.1002/cjce.23336 |
[53] |
McClements DJ. 2007. Critical review of techniques and methodologies for characterization of emulsion stability. Critical Reviews in Food Science and Nutrition 47:611−49 doi: 10.1080/10408390701289292 |
[54] |
Rossi M, Schiraldi A. 1992. Thermal denaturation and aggregation of egg proteins. Thermochimica Acta 199:115−23 doi: 10.1016/0040-6031(92)80255-U |
[55] |
Ge S, Xiong L, Li M, Liu J, Yang J, et al. 2017. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. Food chemistry 234:339−47 doi: 10.1016/j.foodchem.2017.04.150 |
[56] |
Iyer V, Cayatte C, Guzman B, Schneider-Ohrum K, Matuszak R, et al. 2015. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants. Human Vaccines & Immunotherapeutics 11:1853−64 doi: 10.1080/21645515.2015.1046660 |
[57] |
Hwang CA. 2005. Effect of mayonnaise pH and storage temperature on the behavior of Listeria monocytogenes in ham salad and potato salad. Journal of Food Protection 68:1628−34 doi: 10.4315/0362-028X-68.8.1628 |
[58] |
Xiong R, Xie G, Edmondson AS. 2000. Modelling the pH of mayonnaise by the ratio of egg to vinegar. Food Control 11:49−56 doi: 10.1016/S0956-7135(99)00064-X |
[59] |
Kudre TG, Bejjanki SK, Kanwate BW, Sakhare PZ. 2018. Comparative study on physicochemical and functional properties of egg powders from Japanese quail and white Leghorn chicken. International Journal of Food Properties 21:957−72 doi: 10.1080/10942912.2018.1466320 |
[60] |
Laca A, Sáenz MC, Paredes B, Díaz M. 2010. Rheological properties, stability and sensory evaluation of low-cholesterol mayonnaises prepared using egg yolk granules as emulsifying agent. Journal of Food Engineering 97:243−52 doi: 10.1016/j.jfoodeng.2009.10.017 |
[61] |
Zeng T, Wu Z, Zhu J, Yin S, Tang C, et al. 2017. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs. Food Chemistry 231:122−30 doi: 10.1016/j.foodchem.2017.03.116 |
[62] |
Tan H, Sun G, Lin W, Mu C, Ngai T. 2014. Gelatin Particle-Stabilized High Internal Phase Emulsions as Nutraceutical Containers. ACS Applied Materials & Interfaces 6:13977−84 doi: 10.1021/am503341j |
[63] |
Li Z, Xiao M, Wang J, Ngai T. 2013. Pure protein scaffolds from pickering high internal phase emulsion template. Macromolecular Rapid Communications 34:169−74 doi: 10.1002/marc.201200553 |