[1]

Leslie AC. 1982. The International Lily Register. 3rd edition. London: The Royal Horticultural Society.

[2]

Bowman JL, Smyth DR, Meyerowitz EM. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1−20

doi: 10.1242/dev.112.1.1
[3]

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[4]

Meyerowitz EM, Smyth DR, Bowman JL. 1989. Abnormal flowers and pattern formation in floral. Development 106:209−17

doi: 10.1242/dev.106.2.209
[5]

Theißen G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75−85

doi: 10.1016/S1369-5266(00)00139-4
[6]

Krizek BA, Fletcher JC. 2005. Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6:688−98

doi: 10.1038/nrg1675
[7]

Bowman JL, Smyth DR, Meyerowitz EM. 2012. The ABC model of flower development: then and now. Development 139:4095−98

doi: 10.1242/dev.083972
[8]

Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88

doi: 10.1038/nature01741
[9]

Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology 14:1935−40

doi: 10.1016/j.cub.2004.10.028
[10]

Theißen G, Melzer R, Rümpler F. 2016. MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259−71

doi: 10.1242/dev.134080
[11]

Wellmer F, Graciet E, Riechmann JL. 2014. Specification of floral organs in Arabidopsis. Journal of Experimental Botany 65:1−9

doi: 10.1093/jxb/ert385
[12]

Bowman JL, Drews GN, Meyerowitz EM. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell 3:749−58

doi: 10.1105/tpc.3.8.749
[13]

Mizukami Y, Ma H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71:119−31

doi: 10.1016/0092-8674(92)90271-D
[14]

Noor SH, Ushijima K, Murata A, Yoshida K, Tanabe M, et al. 2014. Double flower formation induced by silencing of C-class MADS-box genes and its variation among petunia Cultivars. Scientia Horticulturae 178:1−7

doi: 10.1016/j.scienta.2014.07.029
[15]

Sharifi A, Oizumi K, Kubota S, Bagheri A, Shafaroudi SM, et al. 2015. Double flower formation in Tricyrtis macranthopsis is related to low expression of AGAMOUS ortholog gene. Scientia Horticulturae 193:337−45

doi: 10.1016/j.scienta.2015.06.050
[16]

Akita Y, Nakada M, Kanno A. 2011. Effect of the expression level of an AGAMOUS-like gene on the petaloidy of stamens in the double-flowered lily, 'Elodie'. Scientia Horticulturae 128:48−53

doi: 10.1016/j.scienta.2010.12.012
[17]

Ma J, Shen X, Liu Z, Zhang D, Liu W, et al. 2018. Isolation and characterization of AGAMOUS-like genes associated with double-flower morphogenesis in Kerria japonica (Rosaceae). Frontiers in Plant Science 9:959

doi: 10.3389/fpls.2018.00959
[18]

François L, Verdenaud M, Fu X, Ruleman D, Dubois A, et al. 2018. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Scientific Reports 8:12912

doi: 10.1038/s41598-018-30918-4
[19]

Wang J, Wang H, Ding L, Song A, Shen F, et al. 2017. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'. Plant Molecular Biology 93:593−606

doi: 10.1007/s11103-017-0584-x
[20]

Huang T, Irish VF. 2016. Gene networks controlling petal organogenesis. Journal of Experimental Botany 67:61−68

doi: 10.1093/jxb/erv444
[21]

Hu L, Zheng T, Cai M, Pan H, Wang J, et al. 2019. Transcriptome analysis during floral organ development provides insights into stamen petaloidy in Lagerstroemia speciosa. Plant Physiol Biochem 142:510−18

doi: 10.1016/j.plaphy.2019.08.012
[22]

Lin Z, Damaris RN, Shi T, Li J, Yang P. 2018. Transcriptomic analysis identifies the key genes involved in stamen petaloid in lotus (Nelumbo nucifera). BMC Genomics 19:554

doi: 10.1186/s12864-018-4950-0
[23]

Jing D, Chen W, Xia Y, Shi M, Wang P, et al. 2020. Homeotic transformation from stamen to petal in Eriobotrya japonica is associated with hormone signal transduction and reduction of the transcriptional activity of EjAG. Physiologia Plantarum 168:893−908

doi: 10.1111/ppl.13029
[24]

Varaud E, Brioudes F, Szécsi J, Leroux J, Brown S, et al. 2011. AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. The Plant Cell 23:973−83

doi: 10.1105/tpc.110.081653
[25]

Lampugnani ER, Kilinc A, Smyth DR. 2013. Auxin controls petal initiation in Arabidopsis. Development 140:185−94

doi: 10.1242/dev.084582
[26]

Nibau C, Di Stilio VS, Wu HM, Cheung AY. 2011. Arabidopsis and Tobacco superman regulate hormone signalling and mediate cell proliferation and differentiation. Journal of Experimental Botany 62:949−61

doi: 10.1093/jxb/erq325
[27]

Sundberg E, Østergaard L. 2009. Distinct and dynamic auxin activities during reproductive development. Cold Spring Harbor Perspectives in Biology 1:a001628

doi: 10.1101/cshperspect.a001628
[28]

Aloni R, Aloni E, Langhans M, Ullrich CI. 2006. Role of auxin in regulating Arabidopsis flower development. Planta 223:315−28

doi: 10.1007/s00425-005-0088-9
[29]

Wang J, Yan D, Yuan T, Gao X, Lu Y. 2013. A gain-of-function mutation in IAA8 alters Arabidopsis floral organ development by change of jasmonic acid level. Plant Molecular Biology 82:71−83

doi: 10.1007/s11103-013-0039-y
[30]

Piao C, Gao Z, Yuan S, Li F, Cui M. 2022. The R2R3-MYB gene CgMYB4 is involved in the regulation of cell differentiation and fiber development in the stamens of Chelone glabra L. Protoplasma

doi: 10.1007/s00709-022-01735-4
[31]

Qi T, Huang H, Song S, Xie D. 2015. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. The Plant Cell 27:1620−33

doi: 10.1105/tpc.15.00116
[32]

Zhang Y, Zhang B, Yang T, Zhang J, Liu B, et al. 2020. The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato. Horticulture Research 7:133

doi: 10.1038/s41438-020-00366-1
[33]

Pei H, Ma N, Tian J, Luo J, Chen J, et al. 2013. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiology 163:775−91

doi: 10.1104/pp.113.223388
[34]

Hendelman A, Stav R, Zemach H, Arazi T. 2013. The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. Journal of Experimental Botany 64:5497−507

doi: 10.1093/jxb/ert324
[35]

Wang H, Zhang L, Shen P, Liu X, Zhao R, et al. 2022. Transcriptomic Insight into Underground Floral Differentiation in Erythronium japonicum. BioMed Research International 2022:4447472

doi: 10.1155/2022/4447472
[36]

Elomaa P, Mehto M, Kotilainen M, Helariutta Y, Nevalainen L, et al. 1998. A bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). The Plant Journal 16:93−99

doi: 10.1046/j.1365-313x.1998.00273.x
[37]

Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L, et al. 2017. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife 6:e26759

doi: 10.7554/eLife.26759
[38]

Liu Z, Zhang D, Liu D, Li F, Lu H. 2013. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Reports 32:227−37

doi: 10.1007/s00299-012-1357-2
[39]

Mao WT, Hsu WH, Li JY, Yang CH. 2021. Distance-based measurement determines the coexistence of B protein hetero- and homodimers in lily tepal and stamen tetrameric complexes. The Plant Journal 105:1357−73

doi: 10.1111/tpj.15117
[40]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[41]

Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. 2003. TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651−52

doi: 10.1093/bioinformatics/btg034
[42]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[43]

Wheeler TJ, Eddy SR. 2013. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29:2487−9

doi: 10.1093/bioinformatics/btt403
[44]

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389−402

doi: 10.1093/nar/25.17.3389
[45]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[46]

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38

doi: 10.1093/bioinformatics/btp612
[47]

Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. PNAS 100:9440−45

doi: 10.1073/pnas.1530509100
[48]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[49]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[50]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303