[1] |
Li S, Cheng Y, Sun D, Ma L, Li M, et al. 2021. Identification and Expression of TOP3α in Gerbera hybrida. Horticultural Plant Journal 7:167−73 doi: 10.1016/j.hpj.2020.05.002 |
[2] |
Li F, Cheng Y, Ma L, Li S, Wang J. 2022. Identification of reference genes provides functional insights into meiotic recombination suppressors in Gerbera hybrida. Horticultural Plant Journal 8:123−32 doi: 10.1016/j.hpj.2020.09.008 |
[3] |
Krizek BA, Fletcher JC. 2005. Molecular mechanisms of flower development: an armchair guide. Nature Reviews Genetics 6:688−98 doi: 10.1038/nrg1675 |
[4] |
Zhang L, Chen F, Zhang X, Li Z, Zhao Y, et al. 2020. The water lily genome and the early evolution of flowering plants. Nature 577:79−84 doi: 10.1038/s41586-019-1852-5 |
[5] |
Meyerowitz EM. 1994. Flower development and evolution: new answers and new questions. PNAS 91:5735−37 doi: 10.1073/pnas.91.13.5735 |
[6] |
Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, et al. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35−39 doi: 10.1038/346035a0 |
[7] |
Mizukami Y, Ma H. 1997. Determination of Arabidopsis floral meristem identity by AGAMOUS. The Plant Cell 9:393−408 doi: 10.1105/tpc.9.3.393 |
[8] |
Chen X. 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022−25 doi: 10.1126/science.1088060 |
[9] |
Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, et al. 2010. Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses. PLoS One 5:e9288 doi: 10.1371/journal.pone.0009288 |
[10] |
Sun Y, Fan Z, Li X, Liu Z, Li J, et al. 2014. Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression. BMC Plant Biology 14:1−11 doi: 10.1186/s12870-014-0288-1 |
[11] |
Sharifi A, Oizumi K, Kubota S, Bagheri A, Shafaroudi SM, et al. 2015. Double flower formation in Tricyrtis macranthopsis is related to low expression of AGAMOUS ortholog gene. Scientia Horticulturae 193:337−45 doi: 10.1016/j.scienta.2015.06.050 |
[12] |
Liu Z, Zhang D, Liu D, Li F, Lu H. 2013. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae). Plant Cell Reports 32:227−37 doi: 10.1007/s00299-012-1357-2 |
[13] |
Gattolin S, Cirilli M, Pacheco I, Ciacciulli A, Da Silva Linge C, et al. 2018. Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae. The Plant Journal 96:358−71 doi: 10.1111/tpj.14036 |
[14] |
François L, Verdenaud M, Fu X, Ruleman D, Dubois A, et al. 2018. A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses. Scientific Reports 8:12912 doi: 10.1038/s41598-018-30918-4 |
[15] |
Wang Q, Zhang X, Lin S, Yang S, Yan X, et al. 2020. Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis. Journal of Experimental Botany 71:1915−27 doi: 10.1093/jxb/erz558 |
[16] |
Gattolin S, Cirilli M, Chessa S, Stella A, Bassi D, et al. 2020. Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. Journal of Experimental Botany 71:2585−95 doi: 10.1093/jxb/eraa032 |
[17] |
Wollmann H, Mica E, Todesco M, Long JA, Weigel D. 2010. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137:3633−42 doi: 10.1242/dev.036673 |
[18] |
Abdirashid H, Lenhard M. 2020. Say it with double flowers. Journal of Experimental Botany 71:2469−71 doi: 10.1093/jxb/eraa109 |
[19] |
Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H. 2005. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Molecular Biology 59:125−35 doi: 10.1007/s11103-005-2161-y |
[20] |
Glover BJ. 2013. My favourite flowering image. Journal of Experimental Botany 64:5775−77 doi: 10.1093/jxb/erp049 |
[21] |
El-Dairi M, House RJ. 2020. Optic nerve hypoplasia. In Handbook of Pediatric Retinal OCT and the Eye-Brain Connection, eds. Toth CA, Ong SS. London: Elsevier. pp. 285−87 https://doi.org/10.1016/B978-0-323-60984-5.00062-7 |
[22] |
Zhang B, Liu Z, Ma J, Song Y, Chen F. 2015. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae). Plant Science 241:277−85 doi: 10.1016/j.plantsci.2015.10.017 |
[23] |
Wang Q, Dan N, Zhang X, Lin S, Bao M, Fu X. 2020. Identification, characterization and functional analysis of C-class genes associated with double flower trait in carnation (Dianthus caryphyllus L. ). Plants 9:87 doi: 10.3390/plants9010087 |
[24] |
Cartolano M, Efremova N, Kuckenberg M, Raman S, Schwarz-Sommer Z. 2009. Enhanced AGAMOUS expression in the centre of the Arabidopsis flower causes ectopic expression over its outer expression boundaries. Planta 230:857−62 doi: 10.1007/s00425-009-0966-7 |
[25] |
Jack T, Sieburth L, Meyerowitz E. 1997. Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers. The Plant Journal 11:825−39 doi: 10.1046/j.1365-313X.1997.11040825.x |
[26] |
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−8 doi: 10.1038/nprot.2008.73 |