[1] |
Giovannoni JJ. 2004. Genetic regulation of fruit development and ripening. The Plant Cell 16:S170−S180 doi: 10.1105/tpc.019158 |
[2] |
Barakate A, Stephens J, Goldie A, Hunter WN, Marshall D, et al. 2011. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco. The Plant Cell 23:4492−506 doi: 10.1105/tpc.111.089037 |
[3] |
Hamann T. 2012. Plant cell wall integrity maintenance as an essential component of biotic stress response mechanisms. Frontiers in Plant Science 3:77 doi: 10.3389/fpls.2012.00077 |
[4] |
Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R. 2010. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiology 154:555−61 doi: 10.1104/pp.110.161281 |
[5] |
Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, et al. 1996. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in Poplar. Plant Physiology 112:1479−90 doi: 10.1104/pp.112.4.1479 |
[6] |
Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519−46 doi: 10.1146/annurev.arplant.54.031902.134938 |
[7] |
Fraser CM, Chapple C. 2011. he phenylpropanoid pathway in Arabidopsis. The Arabidopsis Book 2011:e0152 doi: 10.1199/tab.0152 |
[8] |
Weng JK, Chapple C. 2010. The origin and evolution of lignin biosynthesis. New Phytologist 187:273−85 doi: 10.1111/j.1469-8137.2010.03327.x |
[9] |
Zhong R, Lee C, Ye Z. 2010. Functional Characterization of Poplar Wood-Associated NAC Domain Transcription Factors. Plant Physiology 152:1044−55 doi: 10.1104/pp.109.148270 |
[10] |
Zhang J, Tuskan GA, Tschaplinski TJ, Muchero W, Chen JG. 2020. Transcriptional and post-transcriptional regulation of lignin biosynthesis pathway genes in Populus. Frontiers in Plant Science 11:652 doi: 10.3389/fpls.2020.00652 |
[11] |
Nakano Y, Yamaguchi M, Endo H, Rejab NA, Ohtani M. 2015. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Frontiers in Plant Science 6:288 doi: 10.3389/fpls.2015.00288 |
[12] |
Zhou J, Lee C, Zhong R, Ye Z. 2009. MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. The Plant Cell 21:248−66 doi: 10.1105/tpc.108.063321 |
[13] |
Tang X, Zhuang Y, Qi G, Wang D, Liu H, et al. 2015. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Scientific Reports 5:12240 doi: 10.1038/srep12240 |
[14] |
Patzlaff A, Mclnnis S, Courtenay A, Surman C, Newman LJ, et al. 2003. Characterisation of a pine MYB that regulates lignification. The Plant Journal 36:734−54 doi: 10.1046/j.1365-313x.2003.01916.x |
[15] |
Zhong R, Ye Z. 2015. Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. Plant and Cell Physiology 56:195−14 doi: 10.1093/pcp/pcu140 |
[16] |
Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, et al. 2007. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell 19:270−280 doi: 10.1105/tpc.106.047043 |
[17] |
Kumar M, Campbell L, Turner S. 2016. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Journal of Experimental Botany 67:515−31 doi: 10.1093/jxb/erv533 |
[18] |
Zhao Q, Dixon RA. 2011. Transcriptional networks for lignin biosynthesis: more complex than we thought. Trends in Plant Science 16:227−33 doi: 10.1016/j.tplants.2010.12.005 |
[19] |
Liljegren SJ, Roeder AHK, Kempin SA, Gremski K, Østergaard L, et al. 2004. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843−53 doi: 10.1016/S0092-8674(04)00217-X |
[20] |
Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70 doi: 10.1038/35008089 |
[21] |
Ferrándiz C, Fourquin C. 2014. Role of the FUL-SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany 65:4505−13 doi: 10.1093/jxb/ert479 |
[22] |
Pabón-Mora N, Wong GKS, Ambrose BA. 2014. Evolution of fruit development genes in flowering plants. Frontiers in Plant Science 5:300 doi: 10.3389/fpls.2014.00300 |
[23] |
Garceau DC, Batson MK, Pan IL. 2017. Variations on a theme in fruit development: the PLE lineage of MADS-box genes in tomato (TAGL1) and other species. Planta 246:313−21 doi: 10.1007/s00425-017-2725-5 |
[24] |
Lyu T, Fan Z, Yang W, Yan C, Hu Z, et al. 2019. CjPLE, a PLENA-like gene, is a potential regulator of fruit development via activating the FRUITFUL homolog in Camellia. Journal of Experimental Botany 70:3153−64 doi: 10.1093/jxb/erz142 |
[25] |
Wang W, Zhang J, Ge H, Li S, Li X, et al. 2016. EjMYB8 transcriptionally regulates flesh lignification in loquat fruit. PloS One 11:e0154399 doi: 10.1371/journal.pone.0154399 |
[26] |
Jia N, Liu J, Tan P, Sun Y, Lv Y, et al. 2019. Citrus sinensis MYB Transcription Factor CsMYB85 Induce Fruit Juice Sac Lignification Through Interaction With Other CsMYB Transcription Factors. Frontiers in Plant Science 10:213 doi: 10.3389/fpls.2019.00213 |
[27] |
Xu Q, Wang W, Zeng J, Zhang J, Grierson D, et al. 2015. A NAC transcription factor, EjNAC1, affects lignification of loquat fruit by regulating lignin. Postharvest Biology and Technology 102:25−31 doi: 10.1016/j.postharvbio.2015.02.002 |
[28] |
Wang Q, Hu J, Yang T, Chang S. 2021. Anatomy and lignin deposition of stone cell in Camellia oleifera shell during the young stage. Protoplasma 258:361−70 doi: 10.1007/s00709-020-01568-z |
[29] |
Lin P, Wang K, Wang Y, Hu Z, Yan C, et al. 2022. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biology 23:14 doi: 10.1186/s13059-021-02599-2 |
[30] |
Shen T, Huang B, Xu M, Zhou P, Ni Z, et al. 2022. The reference genome of Camellia chekiangoleosa provides insights into Camellia evolution and tea oil biosynthesis. Horticulture Research 9:uhab083 doi: 10.1093/hr/uhab083 |
[31] |
Yan C, Lin P, Lyu T, Hu Z, Fan Z, et al. 2018. Unraveling the roles of regulatory genes during domestication of cultivated Camellia: evidence and insights from comparative and evolutionary genomics. Genes 9:488 doi: 10.3390/genes9100488 |
[32] |
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, et al. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols 8:1494−512 doi: 10.1038/nprot.2013.084 |
[33] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[34] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[35] |
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735−43 doi: 10.1046/j.1365-313x.1998.00343.x |
[36] |
Kumar S, Fladung M. 2001. Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731−40 doi: 10.1007/s004250100535 |
[37] |
Yin H, Gao P, Liu C, Yang J, Liu Z, et al. 2013. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta 237:15−27 doi: 10.1007/s00425-012-1736-5 |
[38] |
Chao Q, Gao Z, Zhang D, Zhao B, Dong F, et al. 2019. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnology Journal 17:206−19 doi: 10.1111/pbi.12958 |
[39] |
Zhang S, Yang H, Ding L, Song Z, Ma H, et al. 2017. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis. The Plant Cell 29:1007−23 doi: 10.1105/tpc.16.00916 |
[40] |
Dardick C, Callahan AM. 2014. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science 5:284 doi: 10.3389/fpls.2014.00284 |
[41] |
Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, et al. 2010. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biology 8:13 doi: 10.1186/1741-7007-8-13 |
[42] |
Su X, Zhao Y, Wang H, Li G, Cheng X, et al. 2019. Transcriptomic analysis of early fruit development in Chinese white pear (Pyrus bretschneideri Rehd. ) and functional identification of PbCCR1 in lignin biosynthesis. BMC Plant Biology 19:417 doi: 10.1186/s12870-019-2046-x |
[43] |
Liu W, Zhang J, Jiao C, Yin X, Fei Z, et al. 2019. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Horticulture Research 6:49 doi: 10.1038/s41438-019-0131-9 |