[1] |
Shi M, Wang Z, Huang L, Dong J, Zheng X, et al. 2020. Utilization of albumin fraction from defatted rice bran to stabilize and deliver (−)-epigallocatechin gallate. Food Chemistry 311:125894 doi: 10.1016/j.foodchem.2019.125894 |
[2] |
Khan N, Mukhtar H. 2019. Tea polyphenols in promotion of human health. Nutrients 11:39 doi: 10.3390/nu11010039 |
[3] |
Ye J, Augustin MA. 2019. Nano- and micro-particles for delivery of catechins: Physical and biological performance. Critical Reviews in Food Science and Nutrition 59:1563−79 doi: 10.1080/10408398.2017.1422110 |
[4] |
Dai W, Qi D, Yang T, Lv H, Guo L, et al. 2015. Nontargeted analysis using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L. ). Journal of Agricultural and Food Chemistry 63:9869−78 doi: 10.1021/acs.jafc.5b03967 |
[5] |
Ye J, Lv Y, Liu R, Jin J, Wang Y, et al. 2021. Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L. ) and regulatory network of flavonoid biosynthesis. Molecules 26:5836 doi: 10.3390/molecules26195836 |
[6] |
Chen X, Sun H, Qu D, Yan F, Jin W, et al. 2020. Identification and characterization of key aroma compounds in Chinese high altitude and northernmost black tea (Camellia sinensis) using distillation extraction and sensory analysis methods. Flavour and Fragrance Journal 35:666−73 doi: 10.1002/ffj.3605 |
[7] |
Rubel Mozumder NHM, Hwang KH, Lee MS, Kim EH, Hong YS. 2021. Metabolomic understanding of the difference between unpruning and pruning cultivation of tea (Camellia sinensis) plants. Food Research International 140:109978 doi: 10.1016/j.foodres.2020.109978 |
[8] |
Aoki S. 1984. Improvement of quality of green tea by deep-pruning and root-pruning. Japan Agricultural Research Quarterly 18:118−21 |
[9] |
Zhang L, Li M, Li X, Yan P, Zhang L, et al. 2021. Summer pruning improves the branch growth and tea quality of tea trees (Camellia sinensis). Acta Physiologiae Plantarum 43:65 doi: 10.1007/s11738-021-03226-0 |
[10] |
Ravichandran R. 2004. The impact of pruning and time from pruning on quality and aroma constituents of black tea. Food Chemistry 84:7−11 doi: 10.1016/S0308-8146(03)00159-6 |
[11] |
Sun M, Zhang C, Lu M, Gan N, Chen Z, et al. 2018. Metabolic flux enhancement and transcriptomic analysis displayed the changes of catechins following long-term pruning in tea trees (Camellia sinensis). Journal of Agricultural and Food Chemistry 66:8566−73 doi: 10.1021/acs.jafc.8b02877 |
[12] |
Mamun M, Hoque MM, Ahmed M. 2016. Effects of different pruning operations on the incidence of red spider mite of tea in bangladesh. Bangladesh Journal of Botany 45:247−51 |
[13] |
Yu J, Xu J, Huang H, Yang Y. 2008. Comparison on the different rehabilitation methods of heavy pruning, collar pruning and replanting. Journal of Tea Science 28:221−27 |
[14] |
Tan S, Wang X, Liu S, Liang T. 2017. Effect of different crown reconstruction methods on low-yield and low-efficiency tea plantation. Southwest China Journal of Agricultural Sciences 30:876−80 doi: 10.16213/j.cnki.scjas.2017.4.027 |
[15] |
Mohale KC, Hintsa AT, Emanuel MA, Mudau FN. 2018. Metabolic profiling of cultivated bush tea (athrixia phylicoides dc. ) in response to different pruning types. HortScience 53:993−98 doi: 10.21273/HORTSCI13023-18 |
[16] |
Jiang X, Yang P, Peng Y, Li W, Tong Z, et al. 2018. Effects of different pruning mode on growth of tree-crown of young tea trees. Newslett Sericult Tea 4:20−23 doi: 10.3969/j.issn.1007-1253.2018.04.010 |
[17] |
Jiang X, Yang P, Li W, Peng H, Li C, et al. 2017. Effects of different pruning treatments on growth potential and yield of Zhongcha 108. Newslett Sericult Tea 2:13−15 |
[18] |
Yin L, Xiao X, Liu D, Sun Y, Deng S, et al. 2019. Effect of light pruning in different period on tea yield and quality of Yunnan big-leaf varieties. Southwest China Journal of Agricultural Sciences 32:1034−38 doi: 10.16213/j.cnki.scjas.2019.5.014 |
[19] |
Kumar R, Bisen JS, Singh M, Bera B. 2015. Effect of pruning and skiffing on growth and productivity of Darjeeling tea (Camellia sinensis L.). International Journal of Technical Research and Applications 3:28−34 |
[20] |
Xu Y, Wang Y, Su Y, Zhang Y. 2014. Preliminary report on deep pruning effect of tea in different periods. Anhui Agricultural Science Bulletin 20:56−58 doi: 10.16377/j.cnki.issn1007-7731.2014.09.038 |
[21] |
Chen Z, Gong X, Chen J, Li Q, Wang L, et al. 2014. Research and analysis on optimal adjustment of planting tea varieties in guizhou. Seed 33:97−100 doi: 10.16590/j.cnki.1001-4705.2014.05.055 |
[22] |
Chen Y, Duan J, Yang S, Yang E, Jiang Y. 2009. Effect of girdling on levels of catechins in fresh leaf in relation to quality of 'Huang Zhi Xiang' Oolong tea. Plant Foods for Human Nutrition 64:293−96 doi: 10.1007/s11130-009-0139-7 |
[23] |
Yue C, Zeng J, Zhang Z, Wang X, Cao H. 2012. Research progress in the phytohormone of tea plant (Camellia sinensis). Journal of Tea Science 32:382−92 doi: 10.13305/j.cnki.jts.2012.05.009 |
[24] |
Guo F, Guo Y, Wang P, Wang Y, Ni D. 2017. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Planta 246:1139−52 doi: 10.1007/s00425-017-2760-2 |
[25] |
Di T, Zhao L, Chen H, Qian W, Wang P, et al. 2019. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis. Journal of Agricultural and Food Chemistry 67:4689−99 doi: 10.1021/acs.jafc.9b00503 |
[26] |
Jiang J, Ma S, Ye N, Jiang M, Cao J, et al. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86−101 doi: 10.1111/jipb.12513 |
[27] |
Li C, Ng CKY, Fan L. 2015. MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany 114:80−91 doi: 10.1016/j.envexpbot.2014.06.014 |
[28] |
Birkenbihl RP, Diezel C, Somssich IE. 2012. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiology 159:266−85 doi: 10.1104/pp.111.192641 |
[29] |
Jaradat MR, Feurtado JA, Huang D, Lu Y, Cutler AJ. 2013. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biology 13:192 doi: 10.1186/1471-2229-13-192 |
[30] |
Liu Y, Du M, Deng L, Shen J, Fang M, et al. 2019. MYC2 regulates the termination of jasmonate signaling via an autoregulatory negative feedback loop. The Plant Cell 31:106−27 doi: 10.1105/tpc.18.00405 |
[31] |
Zou X, Long J, Zhao K, Peng A, Chen M, et al. 2019. Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. Citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). Plos One 14:e0220017 doi: 10.1371/journal.pone.0220017 |
[32] |
Rubin MJ, Brock MT, Baker RL, Wilcox S, Anderson K, et al. 2018. Circadian rhythms are associated with shoot architecture in natural settings. New Phytologist 219:246−58 doi: 10.1111/nph.15162 |
[33] |
Jiang Z, Xu G, Jing Y, Tang W, Lin R. 2016. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nature Communications 7:12377 doi: 10.1038/ncomms12377 |
[34] |
Zheng XQ, Nie Y, Gao Y, Huang B, Ye J, et al. 2018. Screening the cultivar and processing factors based on the flavonoid profiles of dry teas using principal component analysis. Journal of Food Composition and Analysis 67:29−37 doi: 10.1016/j.jfca.2017.12.016 |
[35] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
[36] |
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158 doi: 10.1073/pnas.1719622115 |
[37] |
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11:1650−67 doi: 10.1038/nprot.2016.095 |
[38] |
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |