[1]

Kabata-Pendias A. 2010. Trace Elements in Soils and Plants. Boca Raton: CRC press https://doi.org/10.1201/b10158

[2]

Williams L, Salt DE. 2009. The plant ionome coming into focus. Current Opinion in Plant Biology 12:247−49

doi: 10.1016/j.pbi.2009.05.009
[3]

Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences 63:635−74

doi: 10.1007/s11427-020-1683-x
[4]

Salt DE, Baxter I, Lahner B. 2008. Ionomics and the study of the plant ionome. Annual Review of Plant Biology 59:709−33

doi: 10.1146/annurev.arplant.59.032607.092942
[5]

Sita K, Kumar V. 2020. Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: a review. Plant Physiology Reports 25:654−63

doi: 10.1007/s40502-020-00553-1
[6]

Ramos-Ruiz R, Martinez F, Knauf-Beiter G. 2019. The effects of GABA in plants. Cogent Food & Agriculture 5:1670553

doi: 10.1080/23311932.2019.1670553
[7]

Li Z, Cheng B, Zeng W, Liu Z, Peng Y. 2019. The transcriptional and post-transcriptional regulation in perennial creeping bentgrass in response to γ-aminobutyric acid (GABA) and heat stress. Environmental and Experimental Botany 162:515−24

doi: 10.1016/j.envexpbot.2019.03.026
[8]

Nayyar H, Kaur R, Kaur S, Singh R. 2014. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. Journal of Plant Growth Regulation 33:408−19

doi: 10.1007/s00344-013-9389-6
[9]

Li Z, Yu J, Peng Y, Huang B. 2016. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports 6:30338

doi: 10.1038/srep30338
[10]

Li Z, Yu J, Peng Y, Huang B. 2017. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiologia plantarum 159:42

doi: 10.1111/ppl.12483
[11]

Liu T, Liu Z, Li Z, Peng Y, Zhang X, et al. 2019. Regulation of heat shock factor pathways by γ-aminobutyric acid (GABA) associated with thermotolerance of creeping bentgrass. International Journal of Molecular Sciences 20:4713

doi: 10.3390/ijms20194713
[12]

Damalas CA. 2018. Exogenous application of gamma-aminobutyric acid (GABA) alleviates the effect of water deficit stress in black cumin (Nigella sativa L.). Industrial Crops & Products 112:741−48

doi: 10.1016/j.indcrop.2017.12.067
[13]

Shang H, Cao S, Yang Z, Cai Y, Zheng Y. 2011. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. Journal of Agricultural and Food Chemistry 59:1264−68

doi: 10.1021/jf104424z
[14]

Kinnersley AM, Lin F. 2000. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regulation 32:65−76

doi: 10.1023/A:1006305120202
[15]

Kaspal M, Kanapaddalagamage MH, Ramesh SA. 2021. Emerging roles of γ aminobutyric acid (GABA) gated channels in plant stress tolerance. Plants 10:2178

doi: 10.3390/plants10102178
[16]

Li Z, Cheng B, Zeng W, Zhang X, Peng Y. 2020. Proteomic and metabolomic profilings reveal crucial functions of γ-aminobutyric acid in regulating Ionic, water, and metabolic homeostasis in creeping bentgrass under salt stress. Journal of proteome research 19:769−80

doi: 10.1021/acs.jproteome.9b00627
[17]

Bouché N, Fromm H. 2004. GABA in plants: Just a metabolite? Trends in Plant Science 9:110−15

doi: 10.1016/j.tplants.2004.01.006
[18]

Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B. 2018. Plant nutrients and abiotic stress tolerance. Gateway East, Singapore: Springer Nature Singapore. pp. XXI, 590 https://doi.org/10.1007/978-981-10-9044-8

[19]

Schaller K. 2013. GABA in grapevines - Is it only a compound for nitrogen storage and/or an import stress and quality indicator? Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture 70:209−16

[20]

Batushansky A, Kirma M, Grillich N, Toubiana D, Pham PA, et al. 2014. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic. Molecular Plant 7:1065−68

doi: 10.1093/mp/ssu017
[21]

Barbosa JM, Singh NK, Cherry JH, Locy RD. 2010. Nitrate uptake and utilization is modulated by exogenous γ-aminobutyric acid in Arabidopsis thaliana seedlings. Plant Physiology and Biochemistry 48:443−50

doi: 10.1016/j.plaphy.2010.01.020
[22]

Fu J, Huang B. 2003. Effects of foliar application of nutrients on heat tolerance of creeping bentgrass. Journal of Plant Nutrition 26:81−96

doi: 10.1081/PLN-120016498
[23]

Knight H. 1999. Calcium signaling during abiotic stress in plants. International Review of Cytology 195:269−324

doi: 10.1016/S0074-7696(08)62707-2
[24]

Bowler C, Fluhr R. 2000. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends in Plant Science 5:241−46

doi: 10.1016/S1360-1385(00)01628-9
[25]

Nayyar H. 2003. Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany 50:253−64

doi: 10.1016/S0098-8472(03)00038-8
[26]

Jiang Y, Huang B. 2001. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany 52:341−49

doi: 10.1093/jexbot/52.355.341
[27]

Kolupaev YE, Akinina GE, Mokrousov AV. 2005. Induction of heat tolerance in wheat coleoptiles by calcium ions and its relation to oxidative stress. Russian Journal of Plant Physiology 52:199−204

doi: 10.1007/s11183-005-0030-9
[28]

Wang S, Wan C, Wang Y, Chen H, Zhou Z, et al. 2004. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments 56:525−39

doi: 10.1016/S0140-1963(03)00063-6
[29]

Glenn E, Brown J. 1998. Effects of soil salt levels on the growth and water use efficiency of Atriplex canescens (Chenopodiaceae) varieties in drying soil. American Journal of Botany 85:10

doi: 10.2307/2446548
[30]

Saha P, Chatterjee P, Biswas AK. 2010. NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian Journal of Experimental Biology 48:593−600

doi: IndianJournalofExperimentalBiology
[31]

Zhang B, Shang S, Zhang H, Jabeen Z, Zhang G. 2013. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. Environmental Toxicology and Chemistry 32:1420−52

doi: 10.1002/etc.2183
[32]

Martínez JP, Kinet JM, Bajji M, Lutts S. 2005. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany 56:2421−31

doi: 10.1093/jxb/eri235
[33]

Li Z, Peng D, Zhang X, Peng Y, Chen M, et al. 2017. Na+ induces the tolerance to water stress in white clover associated with osmotic adjustment and aquaporins-mediated water transport and balance in root and leaf. Environmental and Experimental Botany 144:11−24

doi: 10.1016/j.envexpbot.2017.09.011
[34]

Yu G, Zou J, Feng J, Peng X, Wu J, et al. 2014. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. Journal of Experimental Botany 65:3235−48

doi: 10.1093/jxb/eru171
[35]

Huang X, Salt DE. 2016. Plant ionomics: From elemental profiling to environmental adaptation. Molecular Plant 9:787−97

doi: 10.1016/j.molp.2016.05.003
[36]

Ravet K, Pilon M. 2013. Copper and iron homeostasis in plants: The challenges of oxidative stress. Antioxidants & Redox Signaling 19:919−32

doi: 10.1089/ars.2012.5084
[37]

Yruela I. 2005. Copper in plants. Brazilian Journal of Plant Physiology 17:145−56

doi: 10.1590/s1677-04202005000100012
[38]

Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, et al. 2013. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant and Cell Physiology 54:1378−90

doi: 10.1093/pcp/pct088
[39]

Shikanai T, Müller-Moulé P, Munekage Y, Niyogi KK, Pilon M. 2003. PAA1, a P-Type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333−46

doi: 10.1105/tpc.011817
[40]

Billard V, Ourry A, Maillard A, Garnica M, Coquet L, et al. 2014. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins. PloS one 9:e109889

doi: 10.1371/journal.pone.0109889
[41]

Prasad MNV. 2004. Heavy metal stress in plants: from biomolecules to ecosystems. Berlin: Springer Berlin, Heidelberg. pp. XIV, 462 https://doi.org/10.1007/978-3-662-07743-6

[42]

Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53:1351−65

doi: 10.1093/jexbot/53.372.1351
[43]

Hogland C, Arnon D. 1950. The solution-culture method for growing plants without soil. California Agricultural Experiment Station Circular247

[44]

Zhang G, Bown AW. 1997. The rapid determination of γ-aminobutyric acid. Phytochemistry 44:1007−9

doi: 10.1016/S0031-9422(96)00626-7
[45]

Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413−28

doi: 10.1071/BI9620413
[46]

Blum A. 1989. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Science 29:230−33

doi: 10.2135/cropsci1989.0011183X002900010052x
[47]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[48]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[49]

Horneck DA, Miller RO. 1998. Determination of total nitrogen in plant tissue. In Handbook of Reference Methods for Plant Analysis. vol. 2. Boca Raton: CRC Press. pp. 75−83

[50]

Miller RO. 1998. High-temperature oxidation: dry ashing. In Handbook and Reference Methods for Plant Analysis. Florida: CRC Press. pp. 53−56