[1]

Martin C, Paz-Ares J. 1997. MYB transcription factors in plants. Trends in Genetics 13:67−73

doi: 10.1016/S0168-9525(96)10049-4
[2]

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105−10

doi: 10.1126/science.290.5499.2105
[3]

Kranz H, Scholz K, Weisshaar B. 2000. c-MYB oncogene-like genes encoding three MYB repeats occur in all major plant lineages. The Plant Journal 21:231−35

doi: 10.1046/j.1365-313x.2000.00666.x
[4]

Ogata K, Morikawa S, Nakamura H, Hojo H, Yoshimura S, et al. 1995. Comparison of the free and DNA-complexed forms of the DMA-binding domain from c-Myb. Nature Structural Biology 2:309−20

doi: 10.1038/nsb0495-309
[5]

Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H. 1987. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal 6:3553−58

doi: 10.1002/j.1460-2075.1987.tb02684.x
[6]

Lipsick JS. 1996. One billion years of Myb. Oncogene 13:223−35

[7]

Rubio-Somoza I, Martinez M, Diaz I, Carbonero P. 2006. HvMCB1, a R1MYB transcription factor from barley with antagonistic regulatory functions during seed development and germination. The Plant Journal 45:17−30

doi: 10.1111/j.1365-313X.2005.02596.x
[8]

Li L, Wei Z, Zhou Z, Zhao D, Tang J, et al. 2021. A single amino acid mutant in the EAR motif of IbMYB44.2 reduced the inhibition of anthocyanin accumulation in the purple-fleshed sweetpotato. Plant Physiology and Biochemistry 167:410−19

doi: 10.1016/j.plaphy.2021.08.012
[9]

Kranz HD, Denekamp M, Greco R, Jin H, Leyva A, et al. 1998. Towards functional characterisation of the members of theR2R3-MYB gene family from Arabidopsis thaliana. The Plant Journal 16:263−76

doi: 10.1046/j.1365-313x.1998.00278.x
[10]

Zhou M, Sun Z, Ding M, Logacheva MD, Kreft I, et al. 2017. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytologist 216:814−28

doi: 10.1111/nph.14692
[11]

Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal 55:954−67

doi: 10.1111/j.1365-313X.2008.03565.x
[12]

Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology 57:155−71

doi: 10.1007/s11103-004-6910-0
[13]

Wang F, Chen M, Yu L, Xie L, Yuan L, et al. 2017. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Frontiers in Plant Science 8:1868

doi: 10.3389/fpls.2017.01868
[14]

Hou D, Cheng Z, Xie L, Li X, Li J, et al. 2018. The R2R3MYB gene family in phyllostachys edulis: Genome-Wide analysis and identification of stress or development-related R2R3MYBs. Frontiers in Plant Science 9:738

doi: 10.3389/fpls.2018.00738
[15]

Jiao B, Zhao X, Lu W, Guo L, Luo K. 2019. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiology 39:1187−200

doi: 10.1093/treephys/tpz040
[16]

Xie S, Lei Y, Chen H, Li J, Chen H, et al. 2020. R2R3-MYB transcription factors regulate anthocyanin biosynthesis in grapevine vegetative tissues. Frontiers in Plant Science 11:527

doi: 10.3389/fpls.2020.00527
[17]

Sun C, Wang C, Zhang W, Liu S, Wang W, et al. 2021. The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Horticulture Research 8:156

doi: 10.1038/s41438-021-00590-3
[18]

An J, Li R, Qu F, You C, Wang X, et al. 2018. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. The Plant Journal 96:562−77

doi: 10.1111/tpj.14050
[19]

Ma C, Wang X, Yu M, Zheng X, Sun Z, et al. 2021. PpMYB36 encodes a MYB-type transcription factor that is involved in russet skin coloration in pear (Pyrus pyrifolia). Frontiers in Plant Science 12:776816

doi: 10.3389/fpls.2021.776816
[20]

Song L, Wang X, Han W, Qu Y, Wang Z, et al. 2020. PbMYB120 negatively regulates anthocyanin accumulation in pear. International Journal of Molecular Sciences 21:1528

doi: 10.3390/ijms21041528
[21]

Xue C, Yao JL, Xue YS, Su GQ, Wang L, et al. 2019. PbrMYB169 positively regulates lignification of stone cells in pear fruit. Journal of Experimental Botany 70:1801−14

doi: 10.1093/jxb/erz039
[22]

Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, et al. 2019. A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist 221:309−25

doi: 10.1111/nph.15362
[23]

Wang S, Shi M, Zhang Y, Pan Z, Xie X, et al. 2022. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiology 188:2146−65

doi: 10.1093/plphys/kiac014
[24]

Shen XJ, Guo XW, Guo X, Zhao D, Zhao W, et al. 2017. PacMYBA, a sweet cherry R2R3-MYB transcription factor, is a positive regulator of salt stress tolerance and pathogen resistance. Plant Physiology and Biochemistry 112:302−11

doi: 10.1016/j.plaphy.2017.01.015
[25]

Liu D, Meng S, Xiang Z, Yang G, He N. 2019. An R1R2R3 MYB transcription factor, MnMYB3R1, regulates the polyphenol oxidase gene in mulberry (Morus notabilis). International Journal of Molecular Sciences 20:2602

doi: 10.3390/ijms20102602
[26]

Zhang Y, Tang W, Wang L, Hu Y, Liu X, et al. 2019. Kiwifruit (Actinidia chinensis) R1R2R3-MYB transcription factor AcMYB3R enhances drought and salinity tolerance in Arabidopsis thaliana. Journal of Integrative Agriculture 18:417−27

doi: 10.1016/S2095-3119(18)62127-6
[27]

Dai X, Xu Y, Ma Q, Xu W, Wang T, et al. 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic arabidopsis. Plant Physiology 143:1739−51

doi: 10.1104/pp.106.094532
[28]

Kim JY, Kim DH, Lee JY, Lim SH. 2022. The R3-Type MYB transcription factor BrMYBL2.1 negatively regulates anthocyanin biosynthesis in Chinese cabbage (Brassica rapa L. ) by repressing MYB-bHLH-WD40 complex activity. International Journal of Molecular Sciences 23:3382

doi: 10.3390/ijms23063382
[29]

Ramalingam A, Kudapa H, Pazhamala LT, Garg V, Varshney RK. 2015. Gene expression and yeast two-hybrid studies of 1R-MYB transcription factor mediating drought stress response in chickpea (Cicer arietinum L. ). Frontiers in Plant Science 6:1117

doi: 10.3389/fpls.2015.01117
[30]

Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, et al. 2012. Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544

doi: 10.1186/1471-2164-13-544
[31]

Khodadadi E, Mehrabi AA, Najafi A, Rastad S, Masoudi-Nejad A. 2017. Systems biology study of transcriptional and post-transcriptional co-regulatory network sheds light on key regulators involved in important biological processes in Citrus sinensis. Physiology and Molecular Biology of Plants 23:331−42

doi: 10.1007/s12298-017-0416-0
[32]

Deng Y, Lu S. 2017. biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36:257−90

doi: 10.1080/07352689.2017.1402852
[33]

Luo Q, Mittal A, Jia F, Rock CD. 2012. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Molecular Biology 80:117−29

doi: 10.1007/s11103-011-9778-9
[34]

Tillmanns S, Otto C, Jaffray E, du Roure C, Bakri Y, et al. 2007. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Molecular and Cellular Biology 27:5554−64

doi: 10.1128/MCB.01811-06
[35]

Bies J, Markus J, Wolff L. 2002. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. Journal of Biological Chemistry 277:8999−9009

doi: 10.1074/jbc.M110453200
[36]

Fuglerud BM, Ledsaak M, Rogne M, Eskeland R, Gabrielsen OS. 2018. The pioneer factor activity of c-Myb involves recruitment of p300 and induction of histone acetylation followed by acetylation-induced chromatin dissociation. Epigenetics & Chromatin 11:35

doi: 10.1186/s13072-018-0208-y
[37]

Hirai R, Wang S, Demura T, Ohtani M. 2022. Histone deacetylation controls xylem vessel cell differentiation via transcriptional regulation of a transcription repressor complex OFP1/4–MYB75–KNAT7–BLH6. Frontiers in Plant Science 12:825810

doi: 10.3389/fpls.2021.825810
[38]

Chezem WR, Clay NK. 2016. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs. Phytochemistry 131:26−43

doi: 10.1016/j.phytochem.2016.08.006
[39]

Li S, Allen PJ, Napoli RS, Browne RG, Pham H, et al. 2020. MYB–bHLH–TTG1 regulates arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors. Plant and Cell Physiology 61:1005−18

doi: 10.1093/pcp/pcaa027
[40]

Liu Y, Hou H, Jiang X, Wang P, Dai X, et al. 2018. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB–bHLH–WD40 ternary complexes. International Journal of Molecular Sciences 19:1686

doi: 10.3390/ijms19061686
[41]

Chen X, Huang H, Qi T, Liu B, Song S. 2016. New perspective of the bHLH-MYB complex in jasmonate-regulated plant fertility in arabidopsis. Plant Signaling & Behavior 11:e1135280

doi: 10.1080/15592324.2015.1135280
[42]

Ohtani M, Demura T. 2019. The quest for transcriptional hubs of lignin biosynthesis: beyond the NAC-MYB-gene regulatory network model. Current Opinion in Biotechnology 56:82−87

doi: 10.1016/j.copbio.2018.10.002
[43]

Xu M, Li S, Liu X, Yin X, Grierson D, et al. 2019. Ternary complex EjbHLH1-EjMYB2-EjAP2-1 retards low temperature-induced flesh lignification in loquat fruit. Plant Physiology and Biochemistry 139:731−7

doi: 10.1016/j.plaphy.2019.04.032
[44]

Zhang Z, Hu X, Zhang Y, Miao Z, Xie C, et al. 2016. Opposing control by transcription factors MYB61 and MYB3 increases freezing tolerance by relieving C-repeat binding factor suppression. Plant Physiology 172:1306−23

doi: 10.1104/pp.16.00051
[45]

Bian S, Sui X, Wang J, Tian T, Wang C, et al. 2021. NtMYB305a binds to the jasmonate-responsive GAG region of NtPMT1a promoter to regulate nicotine biosynthesis. Plant Physiology 188:151−66

doi: 10.1093/plphys/kiab458
[46]

Zhong R, Lee C, McCarthy RL, Reeves CK, Jones EG, et al. 2011. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant and Cell Physiology 52:1856−71

doi: 10.1093/pcp/pcr123
[47]

Wang Z, Mao Y, Guo Y, Gao J, Liu X, et al. 2020. MYB transcription factor161 mediates feedback regulation of Secondary wall-associated NAC-Domain1 family genes for wood formation. Plant Physiology 184:1389−406

doi: 10.1104/pp.20.01033
[48]

Kumar D, Chattopadhyay S. 2018. Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. Journal of Experimental Botany 69:3729−43

doi: 10.1093/jxb/ery166
[49]

Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, et al. 2022. Minor tropical fruits as a potential source of bioactive and functional foods. Critical Reviews in Food Science and Nutrition

doi: 10.1080/10408398.2022.2033953
[50]

Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. 2021. Tropical fruits and their co-products as bioactive compounds and their health effects: A Review. Foods 10:1952

doi: 10.3390/foods10081952
[51]

Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J. 2020. flavonoids as anticancer agents. Nutrients 12:457

doi: 10.3390/nu12020457
[52]

Liu W, Feng Y, Yu S, Fan Z, Li X, et al. 2021. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22:12824

doi: 10.3390/ijms222312824
[53]

Yan H, Wu Z, Zhou Q, Sun G, Huang R. 2021. Characterization and analysis of MYB transcription factor in Mangiferaindica L. Molecular Plant Breeding 19:6318−27

doi: 10.13271/j.mpb.019.006318
[54]

Chen Z, Hu F, Ruan C, Fan H, Guo L, et al. 2019. Bioinformatics and gene Expression analysis of pineapple R2R3-MYB gene family. Chinese Journal of Tropical Crops 40:1958−71

[55]

Cao Y, Jia H, Xing M, Jin R, Grierson D, et al. 2021. Genome-wide analysis of MYB gene family in Chinese bayberry (Morella rubra) and identification of members regulating flavonoid biosynthesis. Frontiers in Plant Science 12:691384

doi: 10.3389/fpls.2021.691384
[56]

Pucker B, Pandey A, Weisshaar B, Stracke R. 2020. The R2R3-MYB gene family in banana (Musa acuminata): Genome-wide identification, classification and expression patterns. PLoS One 15:e0239275

doi: 10.1371/journal.pone.0239275
[57]

Xie F, Hua Q, Chen C, Zhang Z, Zhang R, et al. 2021. Genome-wide characterization of R2R3-MYB transcription factors in pitaya reveals a R2R3-MYB repressor HuMYB1 involved in fruit ripening through regulation of betalain biosynthesis by repressing betalain biosynthesis-related genes. Cells 10:1949

doi: 10.3390/cells10081949
[58]

Chen Q, Zhang X, Fang Y, Wang B, Xu S, et al. 2022. Genome-wide identification and expression analysis of the R2R3-MYB transcription factor family revealed their potential roles in the flowering process in longan (Dimocarpus longan). Frontiers in Plant Science 13:820439

doi: 10.3389/fpls.2022.820439
[59]

Jue DW, Sang XL, Liu LQ, Shu B, Wang YC, et al. 2019. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition. BMC Genomics 20:126

doi: 10.1186/s12864-019-5461-3
[60]

Zhang T, Huang HM, Xu L, Wu XM, Yuan CC, et al. 2020. Bioinformatics analysis of MYB transcription factor family genes based on the transcriptome of papaya (Carica papaya L.). Molecular Plant Breeding 18:4908−17

[61]

Ding F, Li H, Zhang S, Wang J, Peng H, et al. 2021. Comparative transcriptome analysis to identify fruit coloration-related genes of late-ripening litchi mutants and their wild type. Scientia Horticulturae 288:110369

doi: 10.1016/j.scienta.2021.110369
[62]

Lai B, Hu B, Qin Y, Zhao J, Wang H, et al. 2015. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics 16:225

doi: 10.1186/s12864-015-1433-4
[63]

Nie K. 2021. Cloning and analysis of MYB transcription factors gene related to lignin synthesis in postharvest wax apple fruit. Thesis. JiMei University, Xiamen

[64]

Mahdavi-Darvari F, Noor NM. 2017. New insight into early somatic embryogenesis of mangosteen (Garcinia mangostana) through de novo and comparative transcriptome analyses. Tropical Plant Biology 10:30−44

doi: 10.1007/s12042-016-9182-3
[65]

Matra DD, Kozaki T, Ishii K, Poerwanto R, Inoue E. 2019. Comparative transcriptome analysis of translucent flesh disorder in mangosteen (Garcinia mangostana L.) fruits in response to different water regimes. PLoS One 14:e0219976

doi: 10.1371/journal.pone.0219976
[66]

Xia C, Jiang S, Tan Q, Wang W, Zhao L, et al. 2022. Chromosomal-level genome of macadamia (Macadamia integrifolia). Tropical Plants 1:3

doi: 10.48130/TP-2022-0003
[67]

Sunil L, Shetty NP. 2022. Biosynthesis and regulation of anthocyanin pathway genes. Applied Microbiology and Biotechnology 106:1783−98

doi: 10.1007/s00253-022-11835-z
[68]

Cao YP, Li K, Li YK, Zhao XP, Wang LH. 2020. MYB transcription factors as regulators of secondary metabolism in plants. Biology 9:61

doi: 10.3390/biology9030061
[69]

Lai B, Li X, Hu B, Qin Y, Huang X, et al. 2014. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis. PLoS One 9:e86293

doi: 10.1371/journal.pone.0086293
[70]

Lai B, Du L, Liu R, Hu B, Su W, et al. 2016. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation. Frontiers in Plant Science 7:166

doi: 10.3389/fpls.2016.00166
[71]

Qin Y, Wang D, Fu J, Zhang Z, Qin Y, et al. 2021. Agrobacterium rhizogenes-mediated hairy root transformation as an efficient system for gene function analysis in Litchi chinensis. Plant Methods 17:103

doi: 10.1186/s13007-021-00802-w
[72]

Hu B, Zhao J, Lai B, Qin Y, Wang H, et al. 2016. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Reports 35:831−43

doi: 10.1007/s00299-015-1924-4
[73]

Hu B, Lai B, Wang D, Li J, Chen L, et al. 2019. Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis. Plant and Cell Physiology 60:448−61

doi: 10.1093/pcp/pcy219
[74]

Jiang G, Li Z, Song Y, Zhu H, Lin S, et al. 2019. LcNAC13 physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during litchi fruit ripening. Biomolecules 9:135

doi: 10.3390/biom9040135
[75]

Zhao J, Chen L, Ma A, Wang D, Lu H, et al. 2021. R3-MYB transcription factor LcMYBx from Litchi chinensis negatively regulates anthocyanin biosynthesis by ectopic expression in tobacco. Gene 812:146105

doi: 10.1016/j.gene.2021.146105
[76]

Deng G, Zhang S, Yang Q, Gao H, Sheng O, et al. 2021. MaMYB4, an R2R3-MYB repressor transcription factor, negatively regulates the biosynthesis of anthocyanin in banana. Frontiers in Plant Science 11:600704

doi: 10.3389/fpls.2020.600704
[77]

Shi L, Cao S, Chen W, Yang Z. 2014. Blue light induced anthocyanin accumulation and expression of associated genes in Chinese bayberry fruit. Scientia Horticulturae 179:98−102

doi: 10.1016/j.scienta.2014.09.022
[78]

Niu S, Xu C, Zhang W, Zhang B, Li X, et al. 2010. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887−99

doi: 10.1007/s00425-009-1095-z
[79]

Liu X, Yin X, Allan AC, Lin-Wang K, Shi Y, et al. 2013. The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis. Plant Cell, Tissue and Organ Culture (PCTOC) 115:285−98

doi: 10.1007/s11240-013-0361-8
[80]

Liu X, Feng C, Zhang M, Yin X, Xu C, et al. 2013. The MrWD40-1 gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation. Plant Molecular Biology Reporter 31:1474−84

doi: 10.1007/s11105-013-0621-0
[81]

Wang W. 2019. Analysis of MrMYB1/MrMYB1d allele types and investigation on the role of MrMYB1d in anthocyanin accumulation. Master's Thesis. Zhejiang University, Hangzhou

[82]

Shi L, Chen X, Wang K, Yang M, Chen W, et al. 2021. MrMYB6 From Chinese bayberry (Myrica rubra) negatively regulates anthocyanin and proanthocyanidin accumulation. Frontiers in Plant Science 12:685654

doi: 10.3389/fpls.2021.685654
[83]

Wu Y, Xv J, Han X, Zhang X, Hong Y, et al. 2019. The coloring mechanism of pitaya fruit based on cytohistological observation and omics analysis. Molecular Plant Breeding 17:400−10

[84]

Chong H. 2019. Cloning and expression analysis of pigment synthesis-related transcription factor HuMYB in pitaya. Master's Thesis. Guizhou University, Guiyang

[85]

Zeng C, Xu M, Qi Z, Yan Z, Xiong R, et al. 2017. Expression analysis of flesh color related MYB transcription factor in pitaya fruit. Journal of Tropical Biology 8:153−58

doi: 10.15886/j.cnki.rdswxb.2017.02.004
[86]

Palapol Y, Ketsa S, Lin-Wang K, Ferguson IB, Allan AC. 2009. A MYB transcription factor regulates anthocyanin biosynthesis in mangosteen (Garcinia mangostana L.) fruit during ripening. Planta 229:1323−34

doi: 10.1007/s00425-009-0917-3
[87]

Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D III, et al. 2013. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology 14:r53

doi: 10.1186/gb-2013-14-6-r53
[88]

Li F, Wu B, Yan L, Qin X, Lai J. 2021. Metabolome and transcriptome profiling of Theobroma cacao provides insights into the molecular basis of pod color variation. Journal of Plant Research 134:1323−34

doi: 10.1007/s10265-021-01338-9
[89]

Liu Y, Shi Z, Maximova SN, Payne MJ, Guiltinan MJ. 2015. Tc-MYBPA is an Arabidopsis TT2-like transcription factor and functions in the regulation of proanthocyanidin synthesis in Theobroma cacao. BMC Plant Biology 15:160

doi: 10.1186/s12870-015-0529-y
[90]

Li H, Xu J, Pan J, Wang Y, Li L, et al. 2020. Cloning and bioinformatics analysis of Myb-related-R1 in longan. Anhui Agricultural Science Bulletin 26:12−6+32

[91]

Sun X. 2020. Transcriptome and metabolome joint analysis of molecular regulation mechanism of different coconut varieties in response to salt stress. Master's Thesis. Hainan University, Haikou

[92]

Bai B, Jing Y, Lan L, Wang J, Zhao Z. 2019. Cloning of mango gene MinMYB10 and vector construction for expression analysis. Chinese Journal of Tropical Crops 40:1297−303

[93]

Bai B, Jing Y, Cai B, Tang L, Lan L, et al. 2019. Cloning and constructing vector of MinMYBPA gene from mango. Molecular Plant Breeding 17:1531−36

[94]

Kanzaki S, Ichihi A, Tanaka Y, Fujishige S, Koeda S, et al. 2020. The R2R3-MYB transcription factor MiMYB1 regulates light dependent red coloration of ‘Irwin’ mango fruit skin. Scientia Horticulturae 272:109567

doi: 10.1016/j.scienta.2020.109567
[95]

Wittemann M, Andersson MX, Ntirugulirwa B, Tarvainen L, Wallin G, et al. 2022. Temperature acclimation of net photosynthesis and its underlying component processes in four tropical tree species. Tree Physiology 42:1188−202

doi: 10.1093/treephys/tpac002
[96]

Tominaga A, Ito A, Sugiura T, Yamane H. 2022. How is global warming affecting fruit tree blooming? “Flowering (dormancy) disorder” in Japanese pear (Pyrus pyrifolia) as a case study Frontiers in Plant Science 12:787638

doi: 10.3389/fpls.2021.787638
[97]

Salama AM, Ezzat A, El-Ramady H, Alam-Eldein SM, Okba SK, et al. 2021. Temperate fruit trees under climate change: challenges for dormancy and chilling requirements in warm winter regions. Horticulturae 7:86

doi: 10.3390/horticulturae7040086
[98]

Yu Y, Wu Z, Lu K, Bi C, Liang S, et al. 2016. Overexpression of the MYB transcription factor MYB28 or MYB99 confers hypersensitivity to abscisic acid in arabidopsis. Journal of Plant Biology 59:152−61

doi: 10.1007/s12374-016-0463-z
[99]

Gil HL, Kim J, Chung MS, Joon PS. 2017. The MIEL1 E3 ubiquitin ligase negatively regulates cuticular wax biosynthesis in arabidopsis stems. Plant and Cell Physiology 58:1249−59

doi: 10.1093/pcp/pcx065
[100]

Li J, Han G, Sun C, Sui N. 2019. Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signaling & Behavior 14:1613131

doi: 10.1080/15592324.2019.1613131
[101]

Geng P, Zhang S, Liu J, Zhao C, Wu J, et al. 2019. MYB20, MYB42, MYB43, and MYB85 regulate phenylalanine and lignin biosynthesis during secondary cell wall formation. Plant Physiology 182:1272−83

doi: 10.1104/pp.19.01070
[102]

Wang Z, Xu B, Jia C, Li J, Liu J, et al. 2015. Molecular cloning and expression of MYB1 gene from banana(Musaacuminata L. AAA group, 'Cavendish') under the va rious stresses. Journal of Fruit Science 32:1085−92

doi: 10.13925/j.cnki.gsxb.20150095
[103]

Sun X. 2018. Key enzyme genes of flavonoid biosynthesis in banana fruit. Master's Thesis. Hainan University, Haikou

[104]

Yang H, Wang J, Jia C, Xu B, Jin Z, et al. 2020. Cloning and expression analysis of MaMYBR1 gene from banana. Molecular Plant Breeding 18:5268−73

doi: 10.13271/j.mpb.018.005268
[105]

Yang Y, Li X, Kan B, He H, Li T, et al. 2021. Transcriptome analysis reveals MYB and WRKY transcription factors involved in banana (Musa paradisiaca AA) magnesium deficiency. Planta 254:115

doi: 10.1007/s00425-021-03769-z
[106]

Mazumdar P, Chiun OY, Lau SE, Taheri S, Harikrishna JA. 2021. The banana (Musa acuminata) MYB gene family and MaMYB14, MaMYB63 and MaMYB110 expression in response to salinity-stress in cv. Berangan. Plant Biosystems 155:856−70

doi: 10.1080/11263504.2020.1801878
[107]

Song C, Yang Y, Yang T, Ba L, Zhang H, et al. 2019. MaMYB4 recruits histone deacetylase MaHDA2 and modulates the expression of ω-3 fatty acid desaturase genes during cold stress response in banana fruit. Plant and Cell Physiology 60:2410−22

doi: 10.1093/pcp/pcz142
[108]

Tak H, Negi S, Ganapathi TR. 2017. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS One 12:e0172695

doi: 10.1371/journal.pone.0172695
[109]

Dou T, Hu C, Sun X, Shao X, Wu J, et al. 2016. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. Plant Cell. Tissue and Organ Culture (PCTOC) 125:93−106

doi: 10.1007/s11240-015-0932-y
[110]

Li M, Cai Y, Yang X, Huang S, Li J, et al. 2021. Cloning and expression analysis of MYB gene AcoMYB1 in pineapple (Ananas comosus). Chinese Journal of Tropical Crops 42:1209−15

doi: 10.3969/j.issn.1000-2561.2021.05.002
[111]

Chen H, Lai L, Li L, Liu L, Jakada BH, et al. 2020. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. International Journal of Molecular Sciences 21:5727

doi: 10.3390/ijms21165727
[112]

Wang W, Wei Y, Zhang S, Tan Q, Qin Z, et al. 2020. Cloning and bioinformatics analysis of MYB1 gene from Macadamia integrifolia. Journal of Southern Agriculture 51:245−54

doi: 10.3969/j.issn.2095-1191.2020.02.001
[113]

Yao L, Fan H, Zhang Q, He Y, Xu L, et al. 2020. Function of citrus bacterial canker resistance-related transcription factor CitMYB20. Scientia Agricultura Sinica 53:1997−2008

doi: 10.3864/j.issn.0578-1752.2020.10.007
[114]

Zhang P, Liu X, Yu X, Wang F, Long J, et al. 2020. The MYB transcription factor CiMYB42 regulates limonoids biosynthesis in citrus. BMC Plant Biology 20:254

doi: 10.1186/s12870-020-02475-4
[115]

Shi M, Liu X, Zhang H, He Z, Yang H, et al. 2020. The IAA- and ABA-responsive transcription factor CgMYB58 upregulates lignin biosynthesis and triggers juice sac granulation in pummelo. Horticulture Research 7:139

doi: 10.1038/s41438-020-00360-7
[116]

Jiang G, Zhang D, Li Z, Liang H, Deng R, et al. 2021. Alternative splicing of MaMYB16L regulates starch degradation in banana fruit during ripening. Journal of Integrative Plant Biology 63:1341−52

doi: 10.1111/jipb.13088
[117]

Fan Z, Ba L, Shan W, Xiao Y, Lu W, et al. 2018. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6. The Plant Journal 96:1191−205

doi: 10.1111/tpj.14099
[118]

Li H. 2020. Preliminary research on transcriptional regulation of citrus CitNI5 and CitMYB52 in sucrose metabolism. Master's Thesis. Zhejiang University

[119]

Yang Y, Shan W, Yang T, Wu C, Liu X, et al. 2022. MaMYB4 is a negative regulator and a substrate of RING-type E3 ligases MaBRG2/3 in controlling banana fruit ripening. The Plant Journal 110:1651−69

doi: 10.1111/tpj.15762
[120]

Ba L. 2017. Molecular characterization of MYB transcription factors that are involved in starch degradation during banana fruit ripening. Doctoral Thesis. South China Agricultral University, Guangzhou

[121]

Fu C, Chen H, Gao H, Lu Y, Han C, et al. 2020. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis. Journal of the Science of Food and Agriculture 100:4442−48

doi: 10.1002/jsfa.10484
[122]

Liu S, Liu X, Gou B, Wang D, Liu C, et al. 2022. The interaction between CitMYB52 and CitbHLH2 negatively regulates citrate accumulation by activating CitALMT in citrus fruit. Frontiers in Plant Science 13:848869

doi: 10.3389/fpls.2022.848869
[123]

Shen Y, Jiang T, Liu L, Shi T, Zhao W, et al. 2019. Isolation of ripening-related miRNAs from Carica papaya fruit based on high-throughput sequencing. Journal of Fruit Science 36:1473−82

doi: 10.13925/j.cnki.gsxb.20190229
[124]

Xu Q, Yin X, Zeng J, Ge H, Song M, et al. 2014. Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. Journal of Experimental Botany 65:4349−59

doi: 10.1093/jxb/eru208
[125]

Zeng J, Li X, Zhang J, Ge H, Yin X, et al. 2016. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant, Cell & Environment 39:1780−89

doi: 10.1111/pce.12741
[126]

Wang W, Zhang J, Ge H, Li S, Li X, et al. 2016. EjMYB8 transcriptionally regulates flesh lignification in loquat fruit. PLoS One 11:e0154399

doi: 10.1371/journal.pone.0154399
[127]

Tang R, Zhou Y, Chen Z, Zeng J, Huang H, et al. 2020. Involvement of miRNA-mediated anthocyanin and energy metabolism in the storability of litchi fruit. Postharvest Biology and Technology 165:111200

doi: 10.1016/j.postharvbio.2020.111200
[128]

Lai B, Du L, Hu B, Wang D, Huang X, et al. 2019. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification. BMC Plant Biology 19:62

doi: 10.1186/s12870-019-1658-5
[129]

Kamdee C, Imsabai W, Kirk R, Allan AC, Ferguson IB, et al. 2014. Regulation of lignin biosynthesis in fruit pericarp hardening of mangosteen (Garcinia mangostana L.) after impact. Postharvest Biology and Technology 97:68−76

doi: 10.1016/j.postharvbio.2014.06.004
[130]

Ramya M, Kwon OK, An HR, Park PM, Baek YS, et al. 2017. Floral scent: Regulation and role of MYB transcription factors. Phytochemistry Letters 19:114−20

doi: 10.1016/j.phytol.2016.12.015
[131]

Zhang L, Liu G, Jia J, Zhao G, Xia C, et al. 2016. The wheat MYB-related transcription factor TaMYB72 promotes flowering in rice. Journal of Integrative Plant Biology 58:701−4

doi: 10.1111/jipb.12461
[132]

Li Y, Zeng X, Li Y, Wang L, Zhuang H, et al. 2020. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice. Plant Physiology 184:988−1003

doi: 10.1104/pp.20.00743
[133]

Vimolmangkang S, Han Y, Wei G, Korban SS. 2013. An apple MYB transcription factor, MdMYB3, is involved in regulation of anthocyanin biosynthesis and flower development. BMC Plant Biology 13:176

doi: 10.1186/1471-2229-13-176
[134]

Wang W, Chen H, Zheng S, Fan S, Wang L, et al. 2020. Cloning, structure and function analysis of MiMYB2 gene from macadamia integrifolia. Bulletin of Botanical Research 40:913−22

doi: 10.7525/j.issn.1673-5102.2020.06.014
[135]

Li H, Ding F, Zhang S, Peng H, Pan J, et al. 2020. Bioinformatics and construction of expression vector for longan MYB14. Fujian Journal of Agricultural Sciences 35:929−36

doi: 10.19303/j.issn.1008-0384.2020.09.002
[136]

Liu H, Wang C, Chen H, Zhou B. 2019. Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis. BMC Genomics 20:127

doi: 10.1186/s12864-019-5493-8
[137]

Meng X, Xu J, Zhang M, Du R, Zhao W, et al. 2021. Third-generation sequencing and metabolome analysis reveal candidate genes and metabolites with altered levels in albino jackfruit seedlings. BMC Genomics 22:543

doi: 10.1186/s12864-021-07873-y
[138]

Jiang Y, Liu Y, Gao Y, Peng J, Su W, et al. 2021. Gibberellin induced transcriptome profiles reveal gene regulation of loquat flowering. Frontiers in Genetics 12:70368

doi: 10.3389/fgene.2021.703688
[139]

Germanà MA. 2006. Doubled haploid production in fruit crops. Plant Cell, Tissue and Organ Culture 86:131−46

doi: 10.1007/s11240-006-9088-0
[140]

Sabbadini S, Capocasa F, Battino M, Mazzoni L, Mezzetti B. 2021. Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends in Food Science & Technology 117:125−38

doi: 10.1016/j.jpgs.2021.01.083
[141]

Avakoudjo HGG, Mensah S, Idohou R, Koné MW, Assogbadjo AE. 2022. Effects of climate and protection status on growth and fruit yield of Strychnos spinosa Lam., a tropical wild fruit tree in West Africa. Trees 36:1117−29

doi: 10.1007/s00468-022-02276-2