[1]

Pagán I, García-Arenal F. 2020. Tolerance of plants to pathogens: A unifying view. Annual Review of Phytopathology 58:77−96

doi: 10.1146/annurev-phyto-010820-012749
[2]

Smirnoff N. 1998. Plant resistance to environmental stress. Current Opinion in Biotechnology 9:214−19

doi: 10.1016/S0958-1669(98)80118-3
[3]

Ding Y, Shi Y, Yang S. 2020. Molecular regulation of plant responses to environmental temperatures. Molecular plant 13:544−64

doi: 10.1016/j.molp.2020.02.004
[4]

Hobert O. 2008. Gene regulation by transcription factors and microRNAs. Science 319:1785−86

doi: 10.1126/science.1151651
[5]

Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in plant science 15:247−58

doi: 10.1016/j.tplants.2010.02.006
[6]

Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, et al. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant cell 15:2076−92

doi: 10.1105/tpc.014597
[7]

Cai M, Qiu D, Yuan T, Ding X, Li H, et al. 2008. Identification of novel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant, Cell and Environment 31:86−96

doi: 10.1111/j.1365-3040.2007.01739.x
[8]

Li X, Tang Y, Zhou C, Zhang L, Lv J. 2020. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. International journal of molecular sciences 21:1321

doi: 10.3390/ijms21041321
[9]

Gao H, Wang Y, Xu P, Zhang Z. 2018. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in plant science 9:997

doi: 10.3389/fpls.2018.00997
[10]

Chen W, Zheng C, Yao M, Chen L. 2021. The tea plant CsWRKY26 promotes drought tolerance in transgenic Arabidopsis plants. Beverage Plant Research 1:3

doi: 10.48130/bpr-2021-0003
[11]

Teng R, Wang Y, Lin S, Chen Y, Yang Y, et al. 2021. CsWRKY13, a novel WRKY transcription factor of Camellia sinensis, involved in lignin biosynthesis and accumulation. Beverage Plant Research 1:12

doi: 10.48130/bpr-2021-0012
[12]

Ma C, Xiong J, Liang M, Liu X, Lai X, et al. 2021. Strawberry WRKY Transcription Factor WRKY50 Is Required for Resistance to Necrotrophic Fungal Pathogen Botrytis cinerea. Agronomy 11:2377

doi: 10.3390/agronomy11122377
[13]

Shu P, Zhang S, Li Y, Wang X, Yao L, et al. 2021. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiology and Biochemistry 166:1−9

doi: 10.1016/j.plaphy.2021.05.021
[14]

Wei Z, Ye J, Zhou Z, Chen G, Meng F, et al. 2021. Isolation and characterization of PoWRKY, an abiotic stress-related WRKY transcription factor from Polygonatum odoratum. Physiology and Molecular Biology of Plants 27:1−9

doi: 10.1007/s12298-020-00924-w
[15]

Wang M, Huang Q, Lin P, Zeng Q, Li Y, et al. 2020. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis. Frontiers in Plant Science 10:1746

doi: 10.3389/fpls.2019.01746
[16]

Xia E, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7

doi: 10.1038/s41438-019-0225-4
[17]

Ahmed S, Griffin T, Cash SB, Han W-Y, Matyas C, et al. 2018. Global climate change, ecological stress, and tea production. In Stress Physiology of Tea in the Face of Climate Change, ed. Han W, Li X, Ahammed GJ. Singapore: Springer Singapore. pp. 1−23. https://doi.org/10.1007/978-981-13-2140-5_1

[18]

Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[19]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[20]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[21]

Wu Z, Li X, Liu Z, Li H, Wang Y, et al. 2016. Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress. Molecular Genetics and Genomics 291:255−69

doi: 10.1007/s00438-015-1107-6
[22]

Wang P, Yue C, Chen D, Zheng Y, Zhang Q, et al. 2019. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Genes & Genomics 41:17−33

doi: 10.1007/s13258-018-0734-9
[23]

Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70

doi: 10.1016/j.molp.2016.09.014
[24]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[25]

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206

doi: 10.1016/S1360-1385(00)01600-9
[26]

Ling J, Jiang W, Zhang Y, Yu H, Mao Z, et al. 2011. Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12:471

doi: 10.1186/1471-2164-12-471
[27]

Guo C, Guo R, Xu X, Gao M, Li X, et al. 2014. Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. Journal of Experimental Botany 65:1513−28

doi: 10.1093/jxb/eru007
[28]

Bari R, Jones JDG. 2009. Role of plant hormones in plant defence responses. Plant Molecular Biology 69:473−88

doi: 10.1007/s11103-008-9435-0
[29]

Phukan UJ, Jeena GS, Shukla RK. 2016. WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science 7:760

doi: 10.3389/fpls.2016.00760
[30]

Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86−101

doi: 10.1111/jipb.12513
[31]

Qiu Y, Jing S, Fu J, Li L, Yu D. 2004. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chinese Science Bulletin 49:2159−68

doi: 10.1007/BF03185783
[32]

Wu H, Ni Z, Yao Y, Guo G, Sun Q. 2008. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L. ). Progress in Natural Science 18:697−705

doi: 10.1016/j.pnsc.2007.12.006
[33]

Ding Y, Shi Y, Yang S. 2019. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New phytologist 222:1690−704

doi: 10.1111/nph.15696
[34]

Knight MR, Knight H. 2012. Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytologist 195:737−51

doi: 10.1111/j.1469-8137.2012.04239.x
[35]

Yan Y, Jeong S, Park CE, Mueller ND, Piao S, et al. 2021. Effects of extreme temperature on China’s tea production. Environmental Research Letters 16:044040

doi: 10.1088/1748-9326/abede6
[36]

Chen F, Hu Y, Vannozzi A, Wu K, Cai H, et al. 2018. The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences 36:311−35

doi: 10.1080/07352689.2018.1441103
[37]

Wei K, Chen J, Chen Y, Wu L, Xie D. 2012. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Research 19:153−64

doi: 10.1093/dnares/dsr048
[38]

Luo D, Ba L, Shan W, Kuang J, Lu W, et al. 2017. Involvement of WRKY transcription factors in ABA-induced cold tolerance of banana fruit. Journal of Agricultural and Food Chemistry 65:3627−35

doi: 10.1021/acs.jafc.7b00915
[39]

Yao L, Yang B, Ma X, Wang S, Guan Z, et al. 2020. A genome-wide view of transcriptional responses during Aphis glycines infestation in Soybean. International Journal of Molecular Sciences 21:5191

doi: 10.3390/ijms21155191
[40]

Xia E, Li F, Tong W, Li P, Wu Q, et al. 2019. Tea Plant information archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal 17:1938−53

doi: 10.1111/pbi.13111
[41]

Luo Y, Huang X, Song X, Wen B, Xie N, et al. 2022. Identification of a WRKY transcriptional activator from Camellia sinensis that regulates methylated EGCG biosynthesis. Horticulture Research 9:uhac024

doi: 10.1093/hr/uhac024
[42]

Yue H, Wang M, Liu S, Du X, Song W, et al. 2016. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L.). BMC Genomics 17:343

doi: 10.1186/s12864-016-2677-3
[43]

Wan Y, Mao M, Wan D, Yang Q, Yang F, et al. 2018. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia. BMC Plant Biology 18:31

doi: 10.1186/s12870-018-1235-3
[44]

Waqas M, Azhar MT, Rana IA, Azeem F, Ali MA, et al. 2019. Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea (Cicer arietinum L.) reveal their role in abiotic stress-responses. Genes & Genomics 41:467−81

doi: 10.1007/s13258-018-00780-9
[45]

Wu J, Chen J, Wang L, Wang S. 2017. Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean. Frontiers in Plant Science 8:380

doi: 10.3389/fpls.2017.00380
[46]

Shiu SH, Bleecker AB. 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology 132:530−43

doi: 10.1104/pp.103.021964
[47]

Xie Z, Zhang Z, Zou X, Huang J, Ruas P, et al. 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology 137:176−89

doi: 10.1104/pp.104.054312
[48]

Li H, Guo D, Yang Z, Tang X, Peng S. 2014. Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis. Genomics 104:14−23

doi: 10.1016/j.ygeno.2014.04.004
[49]

He Y, Mao S, Gao Y, Zhu L, Wu D, et al. 2016. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus. PloS One 11:e0157558

doi: 10.1371/journal.pone.0157558
[50]

Orre LM, Vesterlund M, Pan Y, Arslan T, Zhu Y, et al. 2019. SubCellBarCode: proteome-wide mapping of protein localization and relocalization. Molecular Cell 73:166−82.E7

doi: 10.1016/j.molcel.2018.11.035
[51]

Zhao M, Zhang N, Gao T, Jin J, Jing T, et al. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist 226:362−72

doi: 10.1111/nph.16364
[52]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33:453−67

doi: 10.1111/j.1365-3040.2009.02041.x
[53]

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, et al. 2015. CDD: NCBI's conserved domain database. Nucleic acids research 43:D222−D226

doi: 10.1093/nar/gku1221
[54]

Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Research 43:D257−D260

doi: 10.1093/nar/gku949
[55]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340
[56]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[57]

Subramanian B, Gao S, Lercher MJ, Hu S, Chen W-H. 2019. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic acids research 47:W270−W275

doi: 10.1093/nar/gkz357
[58]

Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97

doi: 10.1093/bioinformatics/btu817
[59]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[60]

Zhang Q, Cai M, Yu X, Wang L, Guo C, et al. 2017. Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress. Tree Genetics and Genomes 13:78

doi: 10.1007/s11295-017-1161-9
[61]

Li Y, Wang X, Ban Q, Zhu X, Jiang C, et al. 2019. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genomics 20:624

doi: 10.1186/s12864-019-5988-3
[62]

Shi J, Ma C, Qi D, Lv H, Yang T, et al. 2015. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biology 15:233

doi: 10.1186/s12870-015-0609-z
[63]

Cox MP, Peterson DA, Biggs PJ. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485

doi: 10.1186/1471-2105-11-485
[64]

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols 7:562−78

doi: 10.1038/nprot.2012.016
[65]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[66]

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, et al. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Research 40:e115

doi: 10.1093/nar/gks596
[67]

Willems E, Leyns L, Vandesompele J. 2008. Standardization of real-time PCR gene expression data from independent biological replicates. Analytical Biochemistry 379:127−29

doi: 10.1016/j.ab.2008.04.036
[68]

Rychlik W. 2007. OLIGO 7 primer analysis software. In PCR Primer Design. Methods in molecular biology, ed. Yuryev A. vol. 402. Totowa, New Jersey, USA: Humana Press. pp. 35−60 https://doi.org/10.1007/978-1-59745-528-2_2

[69]

Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043−54

doi: 10.1101/gad.1077503
[70]

Zhang Y, Yu H, Yang X, Li Q, Ling J, et al. 2016. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiology and Biochemistry 108:478−87

doi: 10.1016/j.plaphy.2016.08.013
[71]

Gu L, Wang H, Wei H, Sun H, Li L, et al. 2018. Identification, expression, and functional analysis of the group IId WRKY subfamily in upland cotton (Gossypium hirsutum L. ). Frontiers in Plant Science 9:1684

doi: 10.3389/fpls.2018.01684