[1]

Zhang H, Gong G, Guo S, Ren Y, Xu Y, et al. 2011. Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience 46:1245−48

doi: 10.21273/HORTSCI.46.9.1245
[2]

Bates MD, Robinson RW. 1995. Cucumber, melon and watermelon. In Evolution of Crop Plants, eds. Smart J, Simmonds NW. Longman scientific & Tech, Essex, UK. pp. 89–97

[3]

Rivero RM, Ruiz JM, Garcı́a PC, López–Lefebre LR, Sánchez E, et al. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science 160:315−21

doi: 10.1016/S0168-9452(00)00395-2
[4]

Guo X, Liu D, Chong K. 2018. Cold signaling in plants: Insights into mechanisms and regulation. Journal of Integrative Plant Biology 9:745−56

doi: 10.1111/jipb.12706
[5]

Korkmaz A, Dufault RJ. 2001. Developmental consequences of cold temperature stress at transplanting on seedling and field growth and yield. I. Watermelon. Journal of the American Society for Horticultural Science 126:404−9

doi: 10.21273/JASHS.126.4.404
[6]

Sheikh S, Noh J, Seong MH, Jung GT, Kim JM. 2015. Consequences of chilling stress on watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] germplasm lines at seedling stage. Horticulture, Environment, and Biotechnology 56:79−88

doi: 10.1007/s13580-015-0174-2
[7]

Hou W, Sun A, Chen H, Yang F, Pan J, et al. 2016. Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Biologia Plantarum 60:148−54

doi: 10.1007/s10535-015-0575-1
[8]

Zhang X, Lang D, Zhang E, Bai C, Wang H. 2013. Diurnal changes in photosynthesis and antioxidants of Angelica sinensis as influenced by cropping systems. Photosynthetica 51:252−58

doi: 10.1007/s11099-013-0013-6
[9]

Ling N, Deng K, Song Y, Wu Y, Zhao J, et al. 2014. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiological Research 169:570−78

doi: 10.1016/j.micres.2013.10.004
[10]

Everts KL, Himmelstein JC. 2015. Fusarium wilt of watermelon: towards sustainable management of a re-emerging plant disease. Crop Protection 73:93−99

doi: 10.1016/j.cropro.2015.02.019
[11]

Yang R, Mo Y, Liu C, Wang Y, Ma J, et al. 2016. The effects of cattle manure and garlic rotation on soil under continuous cropping of watermelon (Citrullus lanatus L.). PLos One 11:e0156515

doi: 10.1371/journal.pone.0156515
[12]

Hudson O, Waliullah S, Fulton JC, Ji P, Dufault NS, et al. 2021. Marker development for differentiation of Fusarium Oxysporum f. sp. niveum race 3 from races 1 and 2. International Journal of Molecular Sciences 22:822

doi: 10.3390/ijms22020822
[13]

Zhou XG, Everts KL, Bruton BD. 2010. Race 3, a new and highly virulent race of Fusarium oxysporum f. sp. niveum causing Fusarium wilt in watermelon. Plant Disease 94:92−98

doi: 10.1094/PDIS-94-1-0092
[14]

Wechter WP, Kousik C, McMillan M, Levi A. 2012. Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides Plant Introductions. HortScience 47:334−38

doi: 10.21273/HORTSCI.47.3.334
[15]

Bruton BD, Fish WW, Langston DB. 2008. First report of Fusarium wilt caused by Fusarium oxysporum f. sp. niveum race 2 in Georgia watermelons. Plant Disease 92:983

doi: 10.1094/PDIS-92-6-0983B
[16]

Harris KR, Wechter WP, Lanini B, Vivoda E, Levi A. 2008. In search of markers linked to Fusarium wilt race 1 resistance in watermelon. HortScience 43:1238

doi: 10.21273/HORTSCI.43.4.1171
[17]

Lü G, Guo S, Zhang H, Geng L, Song F, et al. 2011. Transcriptional profiling of watermelon during its incompatible interaction with Fusarium oxysporum f. sp. niveum. European Journal of Plant Pathology 131:585

doi: 10.1007/s10658-011-9833-z
[18]

Zhang M, Xu J, Liu G, Yao X, Li P, et al. 2015. Characterization of the watermelon seedling infection process by Fusarium oxysporum f. sp. niveum. Plant Pathology 64:1076−84

doi: 10.1111/ppa.12355
[19]

Zhang J, Chen J, Jia R, Ma Q, Zong Z, et al. 2018. Suppression of plant wilt diseases by nonpathogenic Fusarium oxysporum Fo47 combined with actinomycete strains. Biocontrol Science and Technology 28:562−73

doi: 10.1080/09583157.2018.1468996
[20]

Cohen R, Tyutyunik J, Fallik E, Oka Y, Tadmor Y, et al. 2014. Phytopathological evaluation of exotic watermelon germplasm as a basis for rootstock breeding. Scientia Horticulturae 165:203−10

doi: 10.1016/j.scienta.2013.11.007
[21]

Li H, Guo Y, Lan Z, Xu K, Chang J, et al. 2021. Methyl jasmonate mediates melatonin-induced cold tolerance of grafted watermelon plants. Horticulture Research 8:57

doi: 10.1038/s41438-021-00496-0
[22]

Guo Y, Yan J, Chang J, Yang J, Wei C, et al. 2021. Abscisic acid mediates grafting-induced cold tolerance of watermelon via interaction with melatonin and methyl jasmonate. Frontiers in Plant Science 12:785317

doi: 10.3389/fpls.2021.785317
[23]

Lee JM, Oda M. 2003. Grafting of herbaceous vegetable and ornamental crops. In Horticultural Reviews, ed. Janick J, 28:xiii, 482. New York, US: John Wiley & Sons. pp. 61–124 https://doi.org/10.1002/9780470650851.ch2

[24]

Davis AR, Perkins-Veazie P. 2007. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Genetics Cooperative Report 28:39−42

[25]

Davis AR, Perkins-Veazie P, Hassell R, Levi A, King SR, et al. 2008. Grafting effects on vegetable quality. HortScience 43:1670−72

doi: 10.21273/hortsci.43.6.1670
[26]

Devi P, Perkins-Veazie P, Miles C. 2020. Impact of grafting on watermelon fruit maturity and quality. Horticulturae 6:97

doi: 10.3390/horticulturae6040097
[27]

Costa AES, da Cunha FS, da Cunha Honorato A, Capucho AS, de Cássia Souza Dias R, et al. 2018. Resistance to Fusarium Wilt in watermelon accessions inoculated by chlamydospores. Scientia Horticulturae 228:181−86

doi: 10.1016/j.scienta.2017.10.007
[28]

Huh YC, Om YH, Lee JM. 2002. Utilization of Citrullus germplasm with resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum) for watermelon rootstocks. Acta Horticulturae 588:127−32

doi: 10.17660/actahortic.2002.588.18
[29]

Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, et al. 2008. Cucurbit grafting. Critical Reviews in Plant Sciences 27:50−74

doi: 10.1080/07352680802053940
[30]

Zhang Y, Zhang Y, Zhou Y, Yu J. 2007. Adaptation of cucurbit species to changes in substrate temperature: root growth, antioxidants, and peroxidation. Journal of Plant Biology 50:527−32

doi: 10.1007/BF03030705
[31]

Zhang Y, Qiao Y, Zhang Y, Zhou Y, Yu J. 2008. Effects of root temperature on leaf gas exchange and xylem sap abscisic acid concentrations in six Cucurbitaceae species. Photosynthetica 46:356

doi: 10.1007/s11099-008-0065-1
[32]

Zhou Y, Huang L, Zhang Y, Shi K, Yu J, et al. 2007. Chill-induced decrease in capacity of rubp carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Annals of Botany 100:839−48

doi: 10.1093/aob/mcm181
[33]

Martyn RD, McLaughlin RJ. 1983. Susceptibility of summer squash to the watermelon wilt pathogen (Fusarium oxysporum f. sp. niveum). Plant Disease 67:263−66

doi: 10.1094/PD-67-263
[34]

McMillan RT. 1986. Cross pathogenicity studies with isolates of Fusarium oxysporum from either cucumber or watermelon pathogenic to both crop species. Annals of Applied Biology 109:101−5

doi: 10.1111/j.1744-7348.1986.tb03188.x
[35]

Yetışır H, Sari N, Yücel S. 2003. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica 31:163−69

doi: 10.1007/BF02980786
[36]

Lopez-Galarza S, Bautista AS, Perez DM, Miguel A, Baixauli C, et al. 2004. Effects of grafting and cytokinin-induced fruit setting on color and sugar-content in glasshouse grown triploid watermelon. The Journal of Horticultural Science and Biotechnology 79:971−76

doi: 10.1080/14620316.2004.11511875
[37]

Proietti S, Rouphael Y, Colla G, Cararelli M, De AM, Zacchini M, et al. 2008. Fruit yield of mini–watermelom as affected by grafting and irrigation regimes. Journal of the Science of Food and Agriculture 88:1107−14

doi: 10.1002/jsfa.3207
[38]

Tian S, Ge J, Ai G, Jiang J, Liu Q, et al. 2021. A 2.09 Mb fragment translocation on chromosome 6 causes abnormalities during meiosis and leads to less seed watermelon. Horticulture Research 8:256

doi: 10.1038/s41438-021-00687-9
[39]

Li H, Liu S, Yi C, Wang F, Zhou J, et al. 2014. Hydrogen peroxide mediates abscisic acid-induced HSP70 accumulation and heat tolerance in grafted cucumber plants. Plant, Cell & Environment 37:2768−80

doi: 10.1111/pce.12360
[40]

Clemensson-lindell A. 1994. Triphenyltetrazolium chloride as an indicator of fine-root vitality and environmental stress in coniferous forest stands: applications and limitations. Plant and Soil 159:297−300

doi: 10.1007/BF00009293
[41]

Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604−11

doi: 10.1007/s004250050524
[42]

Zhou W, Leul M. 1998. Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regulation 26:41−47

doi: 10.1023/A:1006004921265
[43]

Stewart RRC, Bewley JD. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology 65:245−48

doi: 10.1104/pp.65.2.245
[44]

Cakmak I, Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology 98:1222−27

doi: 10.1104/pp.98.4.1222
[45]

Patra HK, Kar M, Mishra D. 1978. Catalase activity in leaves and cotyledons during plant development and senescence. Biochemie und Physiologie der Pflanzen 172:385−90

doi: 10.1016/S0015-3796(17)30412-2
[46]

Li H, Yuan G, Zhu C, Zhao T, Zhang R, et al. 2019. Soil fumigation with ammonium bicarbonate or metam sodium under high temperature alleviates continuous cropping-induced Fusarium wilt in watermelon. Scientia Horticulturae 246:979−86

doi: 10.1016/j.scienta.2018.11.090
[47]

Lindsay H. 1973. A colorimetric estimation of reducing sugars in potatoes with 3,5-dinitrosalicylic acid. Potato Research 16:176−79

doi: 10.1007/BF02356048
[48]

Adsule PG, Dan A. 1979. Simplified extraction procedure in the rapid spectrophotometric method for lycopene estimation in tomato. Journal of Food Science and Technology 16:216−18

[49]

Law MY, Charles SA, Halliwell B. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. The Biochemical Journal 210:899−903

doi: 10.1042/bj2100899
[50]

Bradford MM, Williams WL. 1976. New, rapid, sensitive method for protein determination. Federation Proceedings 35:274

[51]

Mitchell JP, Shennan C, Grattan SR, May DM. 1991. Tomato fruit yields and quality under water deficit and salinity. Journal of the American Society for Horticultural Science 116:215−21

doi: 10.21273/JASHS.116.2.215
[52]

Yin R, Bai T, Ma F, Wang X, Li Y, et al. 2010. Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Scientia Horticulturae 126:247−252

doi: 10.1016/j.scienta.2010.07.027