[1]

Kamenetsky R, Zaccai M, Flaishman MA. 2012. Florogenesis. In: Ornamental Geophytes: From basic science to sustainable production, eds. Kamenetsky R, Okubo H. Boca Raton, FL: CRC Press. pp. 197−232 https://doi.org/10.1201/b12881

[2]

Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−37

doi: 10.1007/s00018-011-0673-y
[3]

Simpson GG, Dean C. 2002. Arabidopsis, the Rosetta stone of flowering time. Science 296:285−89

doi: 10.1126/science.296.5566.285
[4]

Simpson GG. 2004. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Current Opinion in Plant Biology 7:570−74

doi: 10.1016/j.pbi.2004.07.002
[5]

Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C. 2002. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243−46

doi: 10.1126/science.1072147
[6]

Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, et al. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development 21:397−402

doi: 10.1101/gad.1518407
[7]

Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, et al. 2016. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malus × domestica). Scientific Reports 6:20695

doi: 10.1038/srep20695
[8]

Guo X, Yu C, Luo L, Wan H, Zhen N, et al. 2017. Transcriptome of the floral transition in Rosa chinensis 'Old Blush'. BMC Genomics 18:199

doi: 10.1186/s12864-017-3584-y
[9]

de Oliveira RR, Cesarino I, Mazzafera P, Dornelas MC. 2014. Flower development in Coffea arabica L.: new insights into MADS-box genes. Plant Reproduction 27:79−94

doi: 10.1007/s00497-014-0242-2
[10]

Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, et al. 2001. Control of flowering time by FLC orthologues in Brassica napus. The Plant Journal 28:545−53

doi: 10.1046/j.1365-313x.2001.01182.x
[11]

Choi K, Kim J, Hwang HJ, Kim S, Park C, et al. 2011. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell 23:289−303

doi: 10.1105/tpc.110.075911
[12]

Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM. 2005. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiology 137:149−56

doi: 10.1104/pp.104.052811
[13]

Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11:949−956

doi: 10.1105/tpc.11.5.949
[14]

Michaels SD, Amasino RM. 2002. Loss of FLOWERING LOCUS C Activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13:935−41

doi: 10.1105/tpc.13.4.935
[15]

Turner AS, Faure S, Zhang Y, Laurie DA. 2013. The effect of day-neutral mutations in barley and wheat on the interaction between photoperiod and vernalization. Theoretical and Applied Genetics 126:2267−77

doi: 10.1007/s00122-013-2133-6
[16]

Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, et al. 2004. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640−44

doi: 10.1126/science.1094305
[17]

Zhu Q, Helliwell CA. 2011. Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany 62:487−95

doi: 10.1093/jxb/erq295
[18]

Ehrich L. 2013. Flowering in South African Iridaceae, In Bulbous Plants: Biotechnology, ed. Ramawat KG, Merillon JM. Boca Raton, FL: CRC Press. pp. 248−69 https://doi.org/10.1201/b16136

[19]

Fadón E. Herrero M, Rodrigo J. 2015. Flower bud dormancy in Prunus species. In Advances in Plant Dormancy, ed. Anderson JV. The Netherlands: Springer, Cham. pp. 123−35 https://doi.org/10.1007/978-3-319-14451-1_6

[20]

Taylor A. 2009. Functional genomics of photoperiodic bulb initiation in onion (Allium cepa). PhD Dissertation. University of Warwick, U. K.

[21]

Taylor A, Massiah AJ, Thomas B. 2010. Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.). Plant and Cell Physiology 51:1638−1647

doi: 10.1093/pcp/pcq120
[22]

Noy-Porat T, Flaishman MA, Eshel A, Sandler-Ziv D, Kamenetsky R. 2009. Florogenesis of the Mediterranean geophyte Narcissus tazetta and temperature requirements for flower initiation and differentiation. Scientia Horticulturae 120:138−42

doi: 10.1016/j.scienta.2008.09.016
[23]

Noy-Porat T, Kamenetsky R, Eshel A, Flaishman MA. 2010. Temporal and spatial expression patterns of the LEAFY homologue NLF during florogenesis in Narcissus tazetta. Plant Science 178:105−13

doi: 10.1016/j.plantsci.2009.10.003
[24]

Rotem N, Shemesh E, Peretz Y, Akad F, Edelbaum O, et al. 2007. Reproductive development and phenotypic differences in garlic are associated with expression and splicing of LEAFY homologue gaLFY. Journal of Experimental Botany 58:1133−41

doi: 10.1093/jxb/erl272
[25]

Neta R, David-Schwartz R, Peretz Y, Sela I, Rabinowitch HD, et al. 2011. Flower development in garlic: the ups and downs of gaLFY expression. Planta 233:1063−72

doi: 10.1007/s00425-011-1361-8
[26]

Wang A, Tang J, Zhao X, Zhu L. 2008. Isolation of LiLFY1 and its expression in lily (Lilium longiflorum Thunb.). Agricultural Sciences in China 7:1077−83

doi: 10.1016/S1671-2927(08)60149-2
[27]

Li Y, Zhang M, Zhang M, Jia G. 2017. Analysis of global gene expression profiles during the flowering initiation process of Lilium × formolongi. Plant Molecular Biology 94:361−79

doi: 10.1007/s11103-017-0612-x
[28]

Zlesak DC, Anderson NO. 2010. Inheritance of non-obligate vernalization requirement for flowering in Lilium formosanum Wallace. Israel Journal of Plant Sciences 57:315−27

doi: 10.1560/IJPS.57.4.315
[29]

Cohat J. 1993. Gladiolus. In The physiology of flower bulbs, eds. De Hertogh A, Le Nard M. Amsterdam: Elsevier. pp. 297−320

[30]

Kamo KK, Krens FA, Ziv M. 2012. Biotechnology for the modification of horticultural traits in geophytes. In Ornamental geophytes: from basic science to sustainable production, eds. Kamenetsky R, Okubo H. Boca Raton, FL: CRC Press. pp. 159−95 https://doi.org/10.1201/b12881

[31]

Luo X, Lu H, Yuan L, Jia Y, Wu Y, et al. 2016. Cloning and expression analysis of gibberellin receptor gene in Gladiolus hybridus. Acta Botanica Boreali-Occidentalia Sinica 36:2152−58

[32]

Blázquez MA, Weigel D. 2000. Integration of floral inductive signals in Arabidopsis. Nature 404:889−92

doi: 10.1038/35009125
[33]

Lee J, Amasino RM. 2013. Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis. Nature Communications 4:2186

doi: 10.1038/ncomms3186
[34]

Zhao T, Ni Z, Dai Y, Yao Y, Nie X, et al. 2006. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics 276:334−50

doi: 10.1007/s00438-006-0147-3
[35]

Monteagudo A, Igartua E, Contreras-Moreira B, Gracia MP, Ramos J, et al. 2019. Fine-tuning of the flowering time control in winter barley: the importance of HvOS2 and HvVRN2 in non-inductive conditions. BMC Plant Biology 19:113

doi: 10.1186/s12870-019-1727-9
[36]

Ruelens P, De Maagd RA, Proost S, Theißen G, Geuten K, et al. 2013. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes. Nature Communications 4:2280

doi: 10.1038/ncomms3280
[37]

Finnegan EJ, Sheldon CC, Jardinaud F, Peacock WJ, Dennis ES. 2004. A cluster of Arabidopsis genes with a coordinate response to an environmental stimulus. Current Biology 14:911−16

doi: 10.1016/j.cub.2004.04.045
[38]

Sheldon CC, Finnegan EJ, Peacock WJ, Dennis ES. 2009. Mechanisms of gene repression by vernalization in Arabidopsis. The Plant Journal 59:488−98

doi: 10.1111/j.1365-313X.2009.03883.x
[39]

Yoshida S, van der Schuren A, van Dop M, van Galen L, Saiga S, et al. 2019. A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nature Plants 5:160−66

doi: 10.1038/s41477-019-0363-6
[40]

Luo C, Lei T. 2017. Bioinformatics analysis of rice DUF966 gene family. Molecular Plant 15:4791−96

[41]

Ye J, Zhong T, Zhang D, Ma C, Wang L, et al. 2019. The auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Molecular Plant 12:360−73

doi: 10.1016/j.molp.2018.10.005
[42]

Andersson CR, Helliwell CA, Bagnall DJ, Hughes TP, Finnegan EJ, et al. 2008. The FLX gene of Arabidopsis is required for FRI-dependent activation of FLC expression. Plant and Cell Physiology 49:191−200

doi: 10.1093/pcp/pcm176
[43]

Anderson NO, Carter J, Hershman A, Houseright V. 2015. Rapid generation cycling enhances selection rate of Gladiolus × hybridus. Acta Horticulturae 1087:429−35

doi: 10.17660/actahortic.2015.1087.58
[44]

Anderson NO. 2019. Selection tools for reducing generation time of geophytic herbaceous perennials. Acta Horticulturae 1237:53−66

doi: 10.17660/actahortic.2019.1237.7
[45]

Aljaser JA. 2020. Gladiolus breeding for rapid generation cycling for potted production and the discovery of gladiolus genes, UFC and FLX. PhD Dissertation. University of Minnesota, Minneapolis, MN, U. S.

[46]

Bamford R. 1935. The chromosome number in Gladiolus. Journal of Agriculture Research 51:945−50

[47]

Saito K, Kusakari, K. 1972. Studies on the occurrence of polyploidy and its contribution to the flower plants breeding.: IX. Cytological observations on the mechanism of decreased fertility in the summer-flowering tetraploid cultivars of Gladiolus grandiflorus Hort. Japanese Journal of Breeding 22:75−82

doi: 10.1270/jsbbs1951.22.75
[48]

Ohri D, Khoshoo TN. 1985. Cytogenetics of garden gladiolus. Cytologia 50:213−31

doi: 10.1508/cytologia.50.213
[49]

Benschop M, Kamenetsky R, Le Nard M, Okubo H, De Hertogh, A. 2010. The global flower bulb industry: Production, utilization, research. Horticultural Reviews 36:1−115

doi: 10.1002/9780470527238.ch1
[50]

Goldblatt P, Manning J. 1998. Gladiolus in southern Africa. Newburg, OR.: Fernwood Press (Pty) Ltd.

[51]

Amasino RM, Michaels SD. 2010. The timing of flowering. Plant Physiology 154:516−20

doi: 10.1104/pp.110.161653
[52]

Cohen A, Barzilay A. 1991. Miniature gladiolus cultivars bred for winter flowering. HortScience 26:216−18

doi: 10.21273/HORTSCI.26.2.216
[53]

González A, Bañón S, Fernández JA, Franco JA, Casas JL, et al. 1998. Flowering responses of Gladiolus tristis (L.) after exposing corms to cold treatment. Scientia Horticulturae 74:279−84

doi: 10.1016/S0304-4238(98)00092-2
[54]

Goldblatt P. 1996. Gladiolus in tropical Africa: Systematics, biology and evolution. Portland, OR: Timber Press

[55]

Wayside Gardens. 2020. Gladiolus Glamini® Mixed. www.waysidegardens.com/rabido-mixed-gladiolus/p/27192-PK-10/

[56]

Old House Gardens. 2020. Gladiolus: Lost forever? https://oldhousegardens.com/display/category/BackSoonGladiolus?bulb=SGL30

[57]

National Center for Biotechnology Information. 2016a. PREDICTED: Musa acuminata subsp. malaccensis protein UPSTREAM OF FLC (LOC103970210), transcript variant X1, mRNA. Accession No. XM_009383889.2 www.ncbi.nlm.nih.gov/nuccore/XM_009383889

[58]

National Center for Biotechnology Information. 2017a. PREDICTED: protein UPSTREAM OF FLC (Elaeis guineensis). Accession No. XM_010920607.2 www.ncbi.nlm.nih.gov/nuccore/XM_010920607.2

[59]

National Center for Biotechnology Information. 2017b. PREDICTED: Elaeis guineensis protein FLC EXPRESSOR (LOC105045886), mRNA. Accession No. XM_010924316.2 www.ncbi.nlm.nih.gov/nuccore/XM_010924316.2

[60]

National Center for Biotechnology Information. 2016b. PREDICTED: Phoenix dactylifera protein FLC EXPRESSOR-like (LOC103714360), mRNA. Accession No. XM_008801571.2 www.ncbi.nlm.nih.gov/nuccore/XM_008801571.2

[61]

Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, et al. 2013. The MaSuRCA genome assembler. Bioinformatics 29:2669−77

doi: 10.1093/bioinformatics/btt476
[62]

Xu H, Yu Q, Shi Y, Hua X, Tang H, et al. 2018. PGD: pineapple genomics database. Horticulture Research 5:66

doi: 10.1038/s41438-018-0078-2
[63]

Droc G, Lariviere D, Guignon V, Yahiaoui N, This D, et al. 2013. The Banana Genome Hub Database. Database 2013:bat035

doi: 10.1093/database/bat035
[64]

Sanusi NSNM, Rosli R, Halim MAA, Chan KL, Nagappan J, et al. 2018. PalmXplore: oil palm gene database. Database (Oxford) 2018:bay095

doi: 10.1093/database/bay095
[65]

Harkess A, Zhou J, Xu C, Bowers JE, Van der Hulst R, et al. 2017. The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications 8:1279

doi: 10.1038/s41467-017-01064-8
[66]

The Arabidopsis Information Resource (TAIR). 2020. The Arabidopsis Information Resource (TAIR). www.arabidopsis.org

[67]

Grant D, Nelson RT, Cannon SB, Shoemaker C. 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research 38:D843−D846

doi: 10.1093/nar/gkp798
[68]

National Center for Biotechnology Information. 2017c. Protein FLX-like 1 [Ananas comosus]. Accession No. XP_020095672.1 www.ncbi.nlm.nih.gov/protein/XP_020095672.1

[69]

National Center for Biotechnology Information. 2016c. PREDICTED: protein FLX-like 1 [Musa acuminata subsp. malaccensis]. Accession No. XP_009420070.1 www.ncbi.nlm.nih.gov/protein/695063148

[70]

National Center for Biotechnology Information. 2019a. Protein FLC EXPRESSOR [Elaeis guineensis]. Accession No. XP_010922618.1 www.ncbi.nlm.nih.gov/protein/XP_010922618.1

[71]

National Center for Biotechnology Information. 2019b. Protein FLC EXPRESSOR [Arabidopsis thaliana]. Accession No. NP_001154541.1 www.ncbi.nlm.nih.gov/protein/NP_001154541.1

[72]

National Center for Biotechnology Information. 2019c. Structural maintenance of chromosomes domain protein [Arabidopsis thaliana]. Accession No. NP_566492.1 www.ncbi.nlm.nih.gov/protein/NP_566492.1

[73]

National Center for Biotechnology Information. 2019d. Sarcolemmal membrane-associated protein [Arabidopsis thaliana]. Accession No. NP_001320766.1 www.ncbi.nlm.nih.gov/protein/NP_001320766.1

[74]

National Center for Biotechnology Information. 2019e. DNA double-strand break repair protein [Arabidopsis thaliana]. Accession No. NP_564678.1 hwww.ncbi.nlm.nih.gov/protein/NP_564678.1

[75]

National Center for Biotechnology Information. 2019f. FLX-like protein [Arabidopsis thaliana]. Accession No. NP_001119474.1 https://www.ncbi.nlm.nih.gov/protein/NP_001119474.1

[76]

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845−58

doi: 10.1038/nprot.2015.053