[1]

Volz RK, Oraguzie N, Whitworth C, How N, Chagne D. et al. 2009. Breeding for red flesh colour in apple: progress and challenges. Acta Horticulturae 814:337−42

doi: 10.17660/ActaHortic.2009.814.54
[2]

Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, et al. 2007. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal 49:414−27

doi: 10.1111/j.1365-313X.2006.02964.x
[3]

Kumar S, Garrick DJ, Bink MC, Whitworth C, Chagné D, et al. 2013. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393

doi: 10.1186/1471-2164-14-393
[4]

Volz RK, Kumar S, Chagné D, Espley R, McGhie TK, et al. 2013. Genetic relationships between red flesh and fruit quality traits in apple. Acta Horticulyurae 976:363−68

doi: 10.17660/ActaHortic.2013.976.49
[5]

Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, et al. 2009. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. The Plant Cell 21:168−83

doi: 10.1105/tpc.108.059329
[6]

van Nocker S, Berry G, Najdowski J, Michelutti R, Luffman M, et al. 2012. Genetic diversity of red-fleshed apples (Malus). Euphytica 185:281−93

doi: 10.1007/s10681-011-0579-7
[7]

Wang N, Zheng Y, Duan N, Zhang Z, Ji X, et al. 2015. Comparative transcriptomes analysis of red-and white-fleshed apples in an F1 population of Malus sieversii f. niedzwetzkyana crossed with M. domestica ‘Fuji’. PLoS One 10:e0133468

doi: 10.1371/journal.pone.0133468
[8]

Zhang S, Chen Y, Zhao L, Li C, Yu J, et al. 2020. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree physiology 40:413−23

doi: 10.1093/treephys/tpaa004
[9]

Zhao J, Quan P, Liu H, Li L, Qi S, et al. 2020. Transcriptomic and metabolic analyses provide new insights into the apple fruit quality decline during long-term cold storage. Journal of Agricultural and Food Chemistry 68:4699−716

doi: 10.1021/acs.jafc.9b07107
[10]

Zhang J, Xu H, Wang N, Jiang S, Fang H, et al. 2018. The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple. Plant Molecular Biology 98:205−18

doi: 10.1007/s11103-018-0770-5
[11]

Li H, Han M, Yu L, Wang S, Zhang J, et al. 2020a. Transcriptome analysis identifies two ethylene response factors that regulate proanthocyanidin biosynthesis during Malus crabapple fruit development. Frontiers in Plant Science 26:76

doi: 10.3389/fpls.2020.00076
[12]

Espley RV, Leif D, Plunkett B, McGhie T, Henry-Kirk R, et al. 2019. Red to brown: an elevated anthocyanic response in apple drives ethylene to advance maturity and fruit flesh browning. Frontiers in Plant Science 10:1248

doi: 10.3389/fpls.2019.01248
[13]

Zuo W, Lu L, Su M, Zhang J, Li Y, et al. 2021. Analysis of differentially expressed genes and differentially abundant metabolites associated with the browning of Meihong red-fleshed apple fruit. Postharvest Biology and Technology 174:111437

doi: 10.1016/j.postharvbio.2020.111437
[14]

Huang W, Kirkpatrick BW, Rosa GJ, Khatib H. 2010. A genome-wide association study using selective DNA pooling identifies candidate markers for fertility in Holstein cattle. Animal Genetics 41:570−78

doi: 10.1111/j.1365-2052.2010.02046.x
[15]

Yang J, Jiang H, Yeh CT, Yu J, Jeddeloh JA, et al. 2015. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. The Plant Journal 84:587−96

doi: 10.1111/tpj.13029
[16]

Zheng W, Shen F, Wang W, Wu B, Wang X, et al. 2020. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. The Plant Genome 13:e20047

doi: 10.1002/tpg2.20047
[17]

Zhang S, Yang J, Li H, Chiang VL, Fu Y. 2021. Cooperative regulation of flavonoid and lignin biosynthesis in plants. Critical Reviews in Plant Sciences 27:109−26

doi: 10.1080/07352689.2021.1898083
[18]

Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, et al. 2013. A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus × domestica Borkh.). PLoS One 18:e78004

doi: 10.1371/journal.pone.0078004
[19]

Sun Q, Jiang S, Zhang T, Xu H, Fang H, et al. 2019. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286

doi: 10.1016/j.plantsci.2019.110286
[20]

Urrestarazu VJ, Muranty H, Denancé C, Leforestier D, Ravon E, et al. 2017. Genome-wide association mapping of flowering and ripening periods in apple. Frontiers in Plant Science 8:1923

doi: 10.3389/fpls.2017.01923
[21]

Wu B, Shen F, Chen C, Liu L, Wang X, et al. 2021a. Natural variations in a pectin acetylesterase gene, MdPAE10, contribute to prolonged apple fruit shelf life. The Plant Genome 14:e20084

doi: 10.1002/tpg2.20084
[22]

Hu D, Li Y, Zhang Q, Li M, Sun C, et al. 2017. The R2R3-MYB transcription factor MdMYB 73 is involved in malate accumulation and vacuolar acidification in apple. The Plant Journal 91:443−54

doi: 10.1111/tpj.13579
[23]

Zhang Q, Yu J, Wang J, Hu D, Hao Y. 2017. Functional characterization of MdMYB73 reveals its involvement in cold stress response in apple calli and Arabidopsis. Journal of Integrative Agriculture 16:2215−21

doi: 10.1016/S2095-3119(17)61723-4
[24]

Wu B, Shen F, Wang X, Zheng W, Xiao C, et al. 2021b. Role of MdERF3 and MdERF118 natural variations in apple flesh firmness/crispness retainability and development of QTL-based genomics-assisted prediction. Plant Biotechnology Journal 19:1022−37

doi: 10.1111/pbi.13527
[25]

Li H, Li Y, Yu J, Wu T, Zhang J, et al. 2020b. MdMYB8 is associated with flavonol biosynthesis via the activation of the MdFLS promoter in the fruits of Malus crabapple. Horticulture Research 7:19

doi: 10.1038/s41438-020-0238-z
[26]

Geng D, Shen X, Xie Y, Yang Y, Bian R, et al. 2020. Regulation of phenylpropanoid biosynthesis by MdMYB88 and MdMYB124 contributes to pathogen and drought resistance in apple. Horticulture Research 7:102

doi: 10.1038/s41438-020-0324-2
[27]

Xie Y, Bao C, Chen P, Cao F, Liu X, et al. 2021. Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124. Journal of Experimental Botany 72:592−607

doi: 10.1093/jxb/eraa449
[28]

Chen Z, Yu L, Liu W, Zhang J, Wang N, et al. 2021. Research progress of fruit color development in apple (Malus domestica Borkh. ). Plant Physiology and Biochemistry 162:267−79

doi: 10.1016/j.plaphy.2021.02.033
[29]

Wu R, Wang Y, Wu T, Xu X, Han Z. 2017. MdMYB4, an R2R3-Type MYB transcription factor, plays a crucial role in cold and salt stress in apple calli. Journal of the American Society for Horticultural Science 142:209−16

doi: 10.21273/JASHS04030-17
[30]

An J, Wang X, Li Y, Song L, Zhao L, et al. 2018. EIN3-LIKE1, MYB1, and ETHYLENE RESPONSE FACTOR3 act in a regulatory loop that synergistically modulates ethylene biosynthesis and anthocyanin accumulation. Plant Physiology 178:808−23

doi: 10.1104/pp.18.00068
[31]

An J, Zhang X, Bi S, You C, Wang X, et al. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal 101:573−89

doi: 10.1111/tpj.14555
[32]

Lu Y, Bu Y, Hao S, Wang Y, Zhang J, et al. 2017. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. Journal of Photochemistry and Photobiology B: Biology 168:40−49

doi: 10.1016/j.jphotobiol.2017.01.017
[33]

Ji XH, Zhang R, Wang N, Yang L, Chen XS. 2015. Transcriptome profiling reveals auxin suppressed anthocyanin biosynthesis in red-fleshed apple callus (Malus sieversii f. niedzwetzkyana). Plant Cell, Tissue and Organ Culture 123:389−404

doi: 10.1007/s11240-015-0843-y
[34]

Tanaka F, Tatsuki M, Matsubara K, Okazaki K, Yoshimura M, et al. 2018. Methyl ester generation associated with flesh browning in ‘Fuji’apples after long storage under repressed ethylene function. Postharvest Biology and Technology 145:53−60

doi: 10.1016/j.postharvbio.2018.06.002
[35]

Segonne SM, Bruneau M, Celton JM, Gall SL, Francin-Allami M, et al. 2014. Multiscale investigation of mealiness in apple: an atypical role for a pectin methylesterase during fruit maturation. BMC Plant Biology 14:375

doi: 10.1186/s12870-014-0375-3
[36]

Mellidou I, Buts K, Hatoum D, Ho QT, Johnston JW, et al. 2014. Transcriptomic events associated with internal browning of apple during postharvest storage. BMC Plant Biology 14:328

doi: 10.1186/s12870-014-0328-x
[37]

Yun Z, Qu H, Wang H, Zhu F, Zhang Z, et al. 2016. Comparative transcriptome and metabolome provides new insights into the regulatory mechanisms of accelerated senescence in litchi fruit after cold storage. Scientific Reports 6:19356

doi: 10.1038/srep19356
[38]

Ayabe SI, Akashi T. 2006. Cytochrome P450s in flavonoid metabolism. Phytochemistry Reviews 5:271−82

doi: 10.1007/s11101-006-9007-3
[39]

Zhou K, Hu L, Li P, Gong X, Ma F. 2017. Genome-wide identification of glycosyltransferases converting phloretin to phloridzin in Malus species. Plant Science 265:131−45

doi: 10.1016/j.plantsci.2017.10.003
[40]

Valiñas MA, Lanteri ML, ten Have A, Andreu AB. 2015. Chlorogenic acid biosynthesis appears linked with suberin production in potato tuber (Solanum tuberosum). Journal of Agricultural and Food Chemistry 63:4902−13

doi: 10.1021/jf505777p
[41]

Gutierrez BL, Zhong G, Brown SK. 2018. Increased phloridzin content associated with russeting in apple (Malus domestica (Suckow) Borkh.) fruit. Genetic Resources and Crop Evolution 65:2135−49

doi: 10.1007/s10722-018-0679-5
[42]

Legay S, Guerriero G, André C, Guignard C, Cocco E, et al. 2016. MdMYB93 is a regulator of suberin deposition in russeted apple fruit skins. New Phytologist 212:977−91

doi: 10.1111/nph.14170
[43]

Joshi M, Baghel RS, Fogelman E, Stern RA, Ginzberg I. 2018. Identification of candidate genes mediating apple fruit-cracking resistance following the application of gibberellic acids 4 + 7 and the cytokinin 6-benzyladenine. Plant Physiology and Biochemistry 127:436−445

doi: 10.1016/j.plaphy.2018.04.015
[44]

Lara I, Belge B, Goulao LF. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology 87:103−12

doi: 10.1016/j.postharvbio.2013.08.012
[45]

Ferguson IB, Snelgar W, Lay-Yee M, Watkins CB, Bowen JH. 1998. Expression of heat shock protein genes in apple fruit in the field. Functional Plant Biology 25:155−63

doi: 10.1071/PP97093
[46]

Wang N, Liu W, Yu L, Guo Z, Chen Z, et al. 2020. Heat shock factor A8a modulates flavonoid synthesis and drought tolerance. Plant Physiology 184:1273−90

doi: 10.1104/pp.20.01106
[47]

Racsko J, Schrader LE. 2012. Sunburn of apple fruit: Historical background, recent advances and future perspectives. Critical Reviews in Plant Sciences 31:455−504

doi: 10.1080/07352689.2012.696453
[48]

Wei Y, Hu W, Xia F, Zeng H, Li X, et al. 2016. Heat shock transcription factors in banana: genome-wide characterization and expression profile analysis during development and stress response. Scientific Reports 6:36864

doi: 10.1038/srep36864
[49]

Zeng JK, Li X, Zhang J, Ge H, Yin XR, et al. 2016. Regulation of loquat fruit low temperature response and lignification involves interaction of heat shock factors and genes associated with lignin biosynthesis. Plant Cell Environment 39:1780−1789

doi: 10.1111/pce.12741
[50]

Li X, Zang C, Ge H, Zhang J, Grierson D, et al. 2017. Involvement of PAL, C4H, and 4CL in chilling injury-induced flesh lignification of loquat fruit. HortScience 52:127−31

doi: 10.21273/HORTSCI11304-16
[51]

Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW. 2012. Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiology 160:1613−29

doi: 10.1104/pp.112.203786
[52]

Davey MW, Kenis K, Keulemans J. 2006. Genetic control of fruit vitamin C contents. Plant Physiology 142:343−51

doi: 10.1104/pp.106.083279
[53]

Kunihisa M, Hayashi T, Hatsuyama Y, Fukasawa-Akada T, Uenishi H, et al. 2021. Genome-wide association study for apple flesh browning: detection, validation, and physiological roles of QTLs. Tree Genetics & Genomes 17:11

doi: 10.1007/s11295-021-01492-0
[54]

Zhou H, Lin-Wang K, Liao L, Gu C, Lu Z, et al. 2015. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase. Frontiers in Plant Science 6:908

doi: 10.3389/fpls.2015.00908
[55]

Hu Y, Cheng H, Zhang Y, Zhang J, Niu S, et al. 2021. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytologist 231:1105−22

doi: 10.1111/nph.17431
[56]

Ring L, Yeh SY, Hücherig S, Hoffmann T, Blanco-Portales R, et al. 2013. Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiology 163:43−60

doi: 10.1104/pp.113.222778
[57]

Zhang J, Yin X, Li H, Xu M, Zhang M, et al. 2020. ETHYLENE RESPONSE FACTOR39 – MYB8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany 71:3172−84

doi: 10.1093/jxb/eraa085
[58]

Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, et al. 2012. Genomic selection for fruit quality traits in apple (Malus × domestica Borkh. ). PLoS One 7:e36674

doi: 10.1371/journal.pone.0036674
[59]

Strandén I, Kantanen J, Russo IRM, Orozco-terWengel P, Bruford MW. 2019. Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity 123:307−17

doi: 10.1038/s41437-019-0207-1
[60]

Gilmour AR, Cullis BR, Harding SA, Thompson R. 2006. ASReml Update: what’s new in Release 2.00. VSN Int. Ltd, Hemel Hempstead, UK.

[61]

Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106

doi: 10.1038/ng.3886
[62]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59

doi: 10.1038/nmeth.1923
[63]

Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987−93

doi: 10.1093/bioinformatics/btr509
[64]

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008

doi: 10.1093/gigascience/giab008
[65]

Magwene PM, Willis JH, Kelly JK. 2011. The statistics of bulk segregant analysis using next generation sequencing. PLoS Computational Biology 7:e1002255

doi: 10.1371/journal.pcbi.1002255
[66]

Mansfeld BN, Grumet R. 2018. QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. The Plant Genome 11:180006

doi: 10.3835/plantgenome2018.01.0006