[1]

Hawkins C, Caruana J, Schiksnis E, Liu Z. 2016. Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. Scientific Reports 6:29017

doi: 10.1038/srep29017
[2]

Alger EI, Platts AE, Deb SK, Luo X, Ou S, et al. 2021. Chromosome-Scale Genome for a Red-Fruited, Perpetual Flowering and Runnerless Woodland Strawberry (Fragaria vesca). Frontiers in Genetics 12:671371

doi: 10.3389/fgene.2021.671371
[3]

Slovin JP, Schmitt K, Folta KM. 2009. An inbred line of the diploid strawberry Fragaria vesca f. semperflorens for genomic and molecular genetic studies in the Rosaceae. Plant Methods 5:15

doi: 10.1186/1746-4811-5-15
[4]

Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genetics 43:109−116

doi: 10.1038/ng.740
[5]

Edger PP, VanBuren R, Colle M, Poorten TJ, Wai CM, et al. 2018. Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity. GigaScience 7:gix124

doi: 10.1093/gigascience/gix124
[6]

Tennessen JA, Govindarajulu R, Ashman TL, Liston A. 2014. Evolutionary origins and dynamics of octoploid strawberry subgenomes revealed by dense targeted capture linkage maps. Genome Biol Evol 6:3295−313

doi: 10.1093/gbe/evu261
[7]

Li Y, Pi M, Gao Q, Liu Z, Kang C. 2019. Updated annotation of the wild strawberry Fragaria vesca V4 genome. Horticulture Research 6:61

doi: 10.1038/s41438-019-0142-6
[8]

Luo H, Dai C, Li Y, Feng J, Liu Z, et al. 2018. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. Journal of Experimental Botany 69:2595−608

doi: 10.1093/jxb/ery096
[9]

Caruana JC, Sittmann JW, Wang W, Liu Z. 2018. Suppressor of runnerless encodes a DELLA protein that controls runner formation for asexual reproduction in strawberry. Molecular Plant 11:230−33

doi: 10.1016/j.molp.2017.11.001
[10]

Zhou J, Wang G, Liu Z. 2018. Efficient genome editing of wild strawberry genes, vector development and validation. Plant Biotechnology Journal 16:1868−77

doi: 10.1111/pbi.12922
[11]

Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, et al. 2013. Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca. The Plant Cell 25:1960−78

doi: 10.1105/tpc.113.111732
[12]

Shahan R, Zawora C, Wight H, Sittmann J, Wang W, et al. 2018. Consensus coexpression network analysis identifies key regulators of flower and fruit development in wild strawberry. Plant Physiology 178:202−16

doi: 10.1104/pp.18.00086
[13]

Zhou J, Sittmann J, Guo L, Xiao Y, Huang X, et al. 2021. Gibberellin and auxin signaling genes RGA1 and ARF8 repress accessory fruit initiation in diploid strawberry. Plant Physiology 185:1059−75

doi: 10.1093/plphys/kiaa087
[14]

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Research 27:722−36

doi: 10.1101/gr.215087.116
[15]

Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, et al. 2019. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biology 20:224

doi: 10.1186/s13059-019-1829-6
[16]

Zimin AV, Salzberg SL. 2020. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Computational Biology 16:e1007981

doi: 10.1371/journal.pcbi.1007981
[17]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[18]

Shumate A, Salzberg SL. 2021. Liftoff: accurate mapping of gene annotations. Bioinformatics 37:1639−43

doi: 10.1093/bioinformatics/btaa1016
[19]

Tenreira T, Lange MJP, Lange T, Bres C, Labadie M, et al. 2017. A specific gibberellin 20-oxidase dictates the flowering-runnering decision in diploid strawberry. The Plant Cell 29:2168−82

doi: 10.1105/tpc.16.00949
[20]

Iwata H, Gaston A, Remay A, Thouroude T, Jeauffre J, et al. 2012. The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry. The Plant Journal 69:116−25

doi: 10.1111/j.1365-313X.2011.04776.x
[21]

Koskela EA, Mouhu K, Albani MC, Kurokura T, Rantanen M, et al. 2012. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry Fragaria vesca. Plant Physiology 159:1043−54

doi: 10.1104/pp.112.196659
[22]

Workman R, Timp W, Fedak R, Kilburn D, Hao S, et al. 2018. High molecular weight DNA extraction from recalcitrant plant species for third generation sequencing. Protocol Exchange 00:1−6

doi: 10.1038/protex.2018.059
[23]

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094−100

doi: 10.1093/bioinformatics/bty191
[24]

Jung S, Lee T, Cheng C, Buble K, Zheng P, et al. 2019. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae. Nucleic Acids Research 47:D1137−D1145

doi: 10.1093/nar/gky1000
[25]

Merchant N, Lyons E, Goff S, Vaughn M, Ware D, et al. 2016. The iPlant collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLOS Biology 14:e1002342

doi: 10.1371/journal.pbio.1002342
[26]

Pertea G, Pertea M. 2020. GFF Utilities: GffRead and GffCompare. F1000Research 9:304

doi: 10.12688/f1000research.23297.2
[27]

Alexa A, Rahnenführer J, Lengauer T. 2006. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22:1600−7

doi: 10.1093/bioinformatics/btl140
[28]

Haug-Baltzell A, Stephens SA, Davey S, Scheidegger CE, Lyons E. 2017. SynMap2 and SynMap3D: web-based whole-genome synteny browsers. Bioinformatics 33:2197−98

doi: 10.1093/bioinformatics/btx144