[1] |
Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, et al. 2022. Moving beyond DNA sequence to improve plant stress responses. Frontiers in Genetics 13:874648 doi: 10.3389/fgene.2022.874648 |
[2] |
Pourkheirandish M, Golicz AA, Bhalla PL, Singh MB. 2020. Global role of crop genomics in the face of climate change. Frontiers in Plant Science 11:922 doi: 10.3389/fpls.2020.00922 |
[3] |
Olsen KM, Schaal BA. 1999. Evidence on the origin of cassava: phylogeography of Manihot esculenta. PNAS 96:5586−91 doi: 10.1073/pnas.96.10.5586 |
[4] |
Malik AI, Kongsil P, Nguyễn VA, Ou W, Sholihin, et al. 2020. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science 70:145−66 doi: 10.1270/jsbbs.18180 |
[5] |
Li S, Cui Y, Zhou Y, Luo Z, Liu J, et al. 2017. The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture 97:2282−90 doi: 10.1002/jsfa.8287 |
[6] |
Soto JC, Ortiz JF, Perlaza-Jiménez L, Vásquez AX, Lopez-Lavalle LAB, et al. 2015. A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics 16:190 doi: 10.1186/s12864-015-1397-4 |
[7] |
Jarvis A, Ramirez-Villegas J, Herrera Campo BV, Navarro-Racines C. 2012. Is cassava the answer to African climate change adaptation. Tropical Plant Biology 5:9−29 doi: 10.1007/s12042-012-9096-7 |
[8] |
Howeler R, Lutaladio N, Thomas G. 2013. Save and grow: Cassava. A guide to sustainable production intensification. Rome: Food and Agriculture Organization of the United Nations. 142 pp. |
[9] |
Wang W, Feng B, Xiao J, Xia Z, Zhou X, et al. 2014. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications 5:5110 doi: 10.1038/ncomms6110 |
[10] |
Zhao P, Liu P, Shao J, Li C, Wang B, et al. 2015. Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. Journal of Experimental Botany 66:1477−88 doi: 10.1093/jxb/eru507 |
[11] |
An D, Yang J, Zhang P. 2012. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics 13:64 doi: 10.1186/1471-2164-13-64 |
[12] |
An F, Li G, Li QX, Li K, Carvalho LJCB, et al. 2016. The Comparatively Proteomic Analysis in Response to Cold Stress in Cassava Plantlets. Plant Molecular Biology Reporter 34:1095−110 doi: 10.1007/s11105-016-0987-x |
[13] |
Hu W, Ji C, Liang Z, Ye J, Ou W, et al. 2021. Resequencing of 388 cassava accessions identifies valuable loci and selection for variation in heterozygosity. Genome Biology 22:316 doi: 10.1186/s13059-021-02524-7 |
[14] |
Hu W, Ji C, Shi H, Liang Z, Ding Z, et al. 2021. Allele-defined genome reveals biallelic differentiation during cassava evolution. Molecular Plant 14:851−54 doi: 10.1016/j.molp.2021.04.009 |
[15] |
Boyer JS. 1982. Plant productivity and environment. Science 218:443−48 doi: 10.1126/science.218.4571.443 |
[16] |
Zhu J. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029 |
[17] |
Pereira LFM, Santos HL, Zanetti S, de Oliveira Brito IA, Tozin LRdS, et al. 2022. Morphology, biochemistry, and yield of cassava as functions of growth stage and water regime. South African Journal of Botany 149:222−39 doi: 10.1016/j.sajb.2022.06.003 |
[18] |
Santisopasri V, Kurotjanawong K, Chotineeranat S, Piyachomkwan K, Sriroth K, et al. 2001. Impact of water stress on yield and quality of cassava starch. Industrial Crops and Products 13:115−129 doi: 10.1016/S0926-6690(00)00058-3 |
[19] |
El-Sharkawy MA. 2004. Cassava biology and physiology. Plant Molecular Biology 56:481−501 doi: 10.1007/s11103-005-2270-7 |
[20] |
Lenis JI, Calle F, Jaramillo G, Perez JC, Ceballos H, et al. 2006. Leaf retention and cassava productivity. Field Crops Research 95:126−34 doi: 10.1016/j.fcr.2005.02.007 |
[21] |
Okogbenin E, Setter TL, Ferguson M, Mutegi R, Ceballos H, et al. 2013. Phenotypic approaches to drought in cassava: review. Frontiers in Physiology 4:93 doi: 10.3389/fphys.2013.00093 |
[22] |
Yan Y, Wang P, Lu Y, Bai Y, Wei Y, et al. 2021. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation. The Plant Journal 107:847−60 doi: 10.1111/tpj.15350 |
[23] |
Alves AA, Setter TL. 2004. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Annals of Botany 94:605−13 doi: 10.1093/aob/mch179 |
[24] |
Wei Y, Liu W, Hu W, Yan Y, Shi H. 2020. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava. New Phytologist 226:476−91 doi: 10.1111/nph.16346 |
[25] |
Li S, Cheng Z, Li Z, Dong S, Yu X, et al. 2022. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava. Theoretical and Applied Genetics 135:817−32 doi: 10.1007/s00122-021-04000-z |
[26] |
Avila LM, Obeidat W, Earl H, Niu X, Hargreaves W, et al. 2018. Shared and genetically distinct Zea mays transcriptome responses to ongoing and past low temperature exposure. BMC Genomics 19:761 doi: 10.1186/s12864-018-5134-7 |
[27] |
El-Sharkawy MA. 2006. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 44:481−512 doi: 10.1007/s11099-006-0063-0 |
[28] |
Zeng C, Ding Z, Zhou F, Zhou Y, Yang R, et al. 2017. The discrepant and similar responses of genome-wide transcriptional profiles between drought and cold stresses in cassava. International Journal of Molecular Sciences 18:2668 doi: 10.3390/ijms18122668 |
[29] |
Li S, Yu X, Cheng Z, Yu X, Ruan M, et al. 2017. Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Frontiers in Plant Science 8:1259 doi: 10.3389/fpls.2017.01259 |
[30] |
Feng R, Ren M, Lu L, Peng M, Guan X, et al. 2019. Involvement of abscisic acid-responsive element-binding factors in cassava (Manihot esculenta) dehydration stress response. Scientific Reports 9:12661 doi: 10.1038/s41598-019-49083-3 |
[31] |
Fan W, Hai M, Guo Y, Ding Z, Tie W, et al. 2016. The ERF transcription factor family in cassava: genome-wide characterization and expression analyses against drought stress. Scientific Report 6:37379 doi: 10.1038/srep37379 |
[32] |
Wu C, Hu W, Yan Y, Tie W, Ding Z, et al. 2018. The late embryogenesis abundant protein family in cassava (Manihot esculenta Crantz): Genome-wide characterization and expression during abiotic stress. Molecules 23:1196 doi: 10.3390/molecules23051196 |
[33] |
Wei Y, Shi H, Xia Z, Tie W, Ding Z, et al. 2016. Genome-wide identification and expression analysis of the WRKY gene family in cassava. Frontiers In Plant Science 7:25 doi: 10.3389/fpls.2016.00025 |
[34] |
Liao W, Li Y, Yang Y, Wang G, Peng M. 2016. Exposure to various abscission-promoting treatments suggests substantial ERF subfamily transcription factors involvement in the regulation of cassava leaf abscission. BMC Genomics 17:538 doi: 10.1186/s12864-016-2845-5 |
[35] |
Hu W, Wei Y, Xia Z, Yan Y, Hou X, et al. 2015. Genome-wide identification and expression analysis of the NAC transcription factor family in cassava. PLoS One 10:e0136993 doi: 10.1371/journal.pone.0136993 |
[36] |
Ding Z, Fu L, Yan Y, Tie W, Xia Z, et al. 2017. Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava. PLoS One 12:e0173043 doi: 10.1371/journal.pone.0173043 |
[37] |
Hu W, Yang H, Yan Y, Wei Y, Tie W, et al. 2016. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava. Scientific Reports 6:22783 doi: 10.1038/srep22783 |
[38] |
Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, et al. 2012. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics 91:385−95 doi: 10.1007/s12041-012-0201-3 |
[39] |
An D, Ma Q, Wang H, Yang J, Zhou W, et al. 2017. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava. Plant Molecular Biology 94:109−24 doi: 10.1007/s11103-017-0596-6 |
[40] |
Yang Y, Liao W, Yu X, Wang B, Peng M, et al. 2016. Overexpression of MeDREB1D confers tolerance to both drought and cold stresses in transgenic Arabidopsis. Acta Physiologiae Plantarum 38:243 doi: 10.1007/s11738-016-2258-8 |
[41] |
Cheng Z, Lei N, Li S, Liao W, Shen J, et al. 2019. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis. Plant Physiology and Biochemistry 138:9−16 doi: 10.1016/j.plaphy.2019.02.015 |
[42] |
Ruan M, Guo X, Wang B, Yang Y, Li W, et al. 2017. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). Journal of Experimental Botany 68:3657−72 doi: 10.1093/jxb/erx202 |
[43] |
Yan Y, Liu W, Wei Y, Shi H. 2020. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnology Journal 18:1504−6 doi: 10.1111/pbi.13321 |
[44] |
Liu J, Chen X, Wang S, Wang Y, Ouyang Y, et al. 2019. MeABL5, an ABA insensitive 5-like basic leucine zipper transcription factor, positively regulates MeCWINV3 in cassava (Manihot esculenta Crantz). Frontiers in Plant Science 10:772 doi: 10.3389/fpls.2019.00772 |
[45] |
Waititu JK, Zhang C, Liu J, Wang H. 2020. Plant Non-Coding RNAs: Origin, Biogenesis, Mode of Action and Their Roles in Abiotic Stress. International Journal of Molecular Sciences 21:8401 doi: 10.3390/ijms21218401 |
[46] |
Chand Jha U, Nayyar H, Mantri N, Siddique KHM. 2021. Non-coding RNAs in legumes: their emerging roles in regulating biotic/abiotic stress responses and plant growth and development. Cells 10:1674 doi: 10.3390/cells10071674 |
[47] |
Zeng C, Wang W, Zheng Y, Chen X, Bo W, et al. 2010. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Research 38:981−995 doi: 10.1093/nar/gkp1035 |
[48] |
Ballén-Taborda C, Plata G, Ayling S, Rodríguez-Zapata F, Becerra Lopez-Lavalle LA, et al. 2013. Identification of cassava microRNAs under abiotic stress. International Journal of Genomics 2013:857986 doi: 10.1155/2013/857986 |
[49] |
Xia J, Zeng C, Chen Z, Zhang K, Chen X, et al. 2014. Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. BMC Genomics 15:634 doi: 10.1186/1471-2164-15-634 |
[50] |
Li S, Cheng Z, Peng M. 2020. Genome-wide identification of miRNAs targets involved in cold response in cassava. Plant Omics Journal 13:57−64 doi: 10.21475/POJ.13.01.20.p2337 |
[51] |
Patanun O, Lertpanyasampatha M, Sojikul P, Viboonjun U, Narangajavana J. 2012. Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). Molecular Biotechnology 53:257−69 doi: 10.1007/s12033-012-9521-z |
[52] |
Lei N, Yu X, Li S, Zeng C, Zou L, et al. 2017. Phylogeny and expression pattern analysis of TCP transcription factors in cassava seedlings exposed to cold and/or drought stress. Scientific Reports 7:10016 doi: 10.1038/s41598-017-09398-5 |
[53] |
Khatabi B, Arikit S, Xia R, Winter S, Oumar D, et al. 2016. High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz.) microRNAs. BMC Genomics 17:85 doi: 10.1186/s12864-016-2391-1 |
[54] |
Rogans SJ, Rey C. 2016. Unveiling the Micronome of Cassava (Manihot esculenta Crantz). PLoS One 11:e0147251 doi: 10.1371/journal.pone.0147251 |
[55] |
Zeng C, Xia J, Chen X, Zhou Y, Peng M, et al. 2017. MicroRNA-like RNAs from the same miRNA precursors play a role in cassava chilling responses. Scientific Reports 7:17135 doi: 10.1038/s41598-017-16861-w |
[56] |
Zeng C, Chen Z, Xia J, Zhang K, Chen X, et al. 2014. Chilling acclimation provides immunity to stress by altering regulatory networks and inducing genes with protective functions in cassava. BMC Plant Biology 14:207 doi: 10.1186/s12870-014-0207-5 |
[57] |
Li S, Cheng Z, Dong S, Li Z, Zou L, et al. 2022. Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response. Plant, Cell & Environment 45:412−26 doi: 10.1111/pce.14236 |
[58] |
Xiao L, Shang XH, Cao S, Xie XY, Zeng WD, et al. 2019. Comparative physiology and transcriptome analysis allows for identification of lncRNAs imparting tolerance to drought stress in autotetraploid cassava. BMC Genomics 20:514 doi: 10.1186/s12864-019-5895-7 |
[59] |
Ding Z, Tie W, Fu L, Yan Y, Liu G, et al. 2019. Strand-specific RNA-seq based identification and functional prediction of drought-responsive lncRNAs in cassava. BMC Genomics 20:214 doi: 10.1186/s12864-019-5585-5 |
[60] |
Li S, Yu X, Lei N, Cheng Z, Zhao P, et al. 2017. Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Scientific Reports 7:45981 doi: 10.1038/srep45981 |
[61] |
Suksamran R, Saithong T, Thammarongtham C, Kalapanulak S. 2020. Genomic and transcriptomic analysis identified novel putative cassava lncRNAs involved in cold and drought stress. Genes 11:366 doi: 10.3390/genes11040366 |
[62] |
Ding Z, Wu C, Tie W, Yan Y, He G, et al. 2019. Strand-specific RNA-seq based identification and functional prediction of lncRNAs in response to melatonin and simulated drought stresses in cassava. Plant Physiology and Biochemistry 140:96−104 doi: 10.1016/j.plaphy.2019.05.008 |
[63] |
Dong S, Xiao L, Li Z, Shen J, Yan H, et al. 2022. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression. Journal of Integrative Agriculture 21:2588−602 doi: 10.1016/j.jia.2022.07.022 |
[64] |
Golldack D, Li C, Mohan H, Probst N. 2014. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science 5:151 doi: 10.3389/fpls.2014.00151 |
[65] |
Sah SK, Reddy KR, Li J. 2016. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science 7:571 doi: 10.3389/fpls.2016.00571 |
[66] |
Ou W, Mao X, Huang C, Tie W, Yan Y, et al. 2018. Genome-wide identification and expression analysis of the kup family under abiotic stress in cassava (Manihot esculenta Crantz). Frontiers in Physiology 9:17 doi: 10.3389/fphys.2018.00017 |
[67] |
Liao W, Yang Y, Li Y, Wang G, Peng M. 2016. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission. Scientific Reports 6:32006 doi: 10.1038/srep32006 |
[68] |
Shang S, Wu C, Huang C, Tie W, Yan Y, et al. 2018. Genome-wide analysis of the GRF family reveals their involvement in abiotic stress response in cassava. Genes 9:110 doi: 10.3390/genes9020110 |
[69] |
Ruan M, Yang Y, Li K, Guo X, Wang B, et al. 2018. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signalling. BMC Plant Biology 18:329 doi: 10.1186/s12870-018-1528-6 |
[70] |
Hu W, Xia Z, Yan Y, Ding Z, Tie W, et al. 2015. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes. Frontiers in Plant Science 6:914 doi: 10.3389/fpls.2015.00914 |
[71] |
Fu L, Ding Z, Han B, Hu W, Li Y, et al. 2016. Physiological investigation and transcriptome analysis of Polyethylene Glycol (PEG)-induced dehydration stress in cassava. International Journal of Molecular Sciences 17:283 doi: 10.3390/ijms17030283 |
[72] |
Cao P, Liu X, Guo J, Chen Y, Li S, et al. 2019. Genome-wide analysis of dynamin gene family in cassava (Manihot esculenta Crantz) and transcriptional regulation of family members ARC5 in hormonal treatments. International Journal of Molecular Sciences 20:5094 doi: 10.3390/ijms20205094 |
[73] |
Li S, Cao P, Wang C, Guo J, Zang Y, et al. 2021. Genome-wide analysis of tubulin gene family in cassava and expression of family member FtsZ2-1 during Various stress. Plants 7103:668 doi: 10.3390/plants10040668 |
[74] |
Wang B, Li S, Zou L, Guo X, Liang J, et al. 2022. Natural variation MeMYB108 associated with tolerance to stress-induced leaf abscission linked to enhanced protection against reactive oxygen species in cassava. Plant Cell Reports 41:1573−87 doi: 10.1007/s00299-022-02879-6 |
[75] |
Liao W, Li S, Lu C, Peng M. 2018. Tau GSTs involved in regulation of leaf abscission by comparison the gene profiling of MeGSTs in various abscission-promoting treatments in cassava abscission zones. BMC Genetics 19:45 doi: 10.1186/s12863-018-0627-6 |
[76] |
Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99 doi: 10.1146/annurev.arplant.55.031903.141701 |
[77] |
Liao W, Wang G, Li Y, Wang B, Zhang P, et al. 2016. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava. Scientific Reports 6:21542 doi: 10.1038/srep21542 |
[78] |
Xu J, Duan X, Yang J, Beeching JR, Zhang P. 2013. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signaling & Behavior 8:e24525 doi: 10.4161/psb.24525 |
[79] |
Xu J, Yang J, Duan X, Jiang Y, Zhang P. 2014. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava (Manihot esculenta Crantz). BMC Plant Biology 14:208 doi: 10.1186/s12870-014-0208-4 |
[80] |
Wang P, Yan Y, Bai Y, Dong Y, Wei Y, et al. 2021. Phosphorylation of RAV1/2 by KIN10 is essential for transcriptional activation of CAT6/7, which underlies oxidative stress response in cassava. Cell Reports 37:110119 doi: 10.1016/j.celrep.2021.110119 |
[81] |
Yang X, Jia Z, Pu Q, Tian Y, Zhu F, et al. 2022. ABA mediates plant development and abiotic stress via alternative splicing. International Journal of Molecular Sciences 23:3796 doi: 10.3390/ijms23073796 |
[82] |
Martín G, Márquez Y, Mantica F, Duque P, Irimia M. 2021. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biology 22:35 doi: 10.1186/s13059-020-02258-y |
[83] |
Reddy ASN. 2007. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annual Review of Plant Biology 58:267−94 doi: 10.1146/annurev.arplant.58.032806.103754 |
[84] |
Ganie SA, Reddy ASN. 2021. Stress-Induced changes in alternative splicing landscape in rice: functional significance of splice isoforms in stress tolerance. Biology 10:309 doi: 10.3390/biology10040309 |
[85] |
Punzo P, Grillo S, Batelli G. 2020. Alternative splicing in plant abiotic stress responses. Biochemical Society Transactions 48:2117−26 doi: 10.1042/BST20200281 |
[86] |
Liu Z, Qin J, Tian X, Xu S, Wang Y, et al. 2017. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L). Plant Biotechnology Journal 16:714−26 doi: 10.1111/pbi.12822 |
[87] |
Song L, Pan Z, Chen L, Dai Y, Wan J, et al. 2020. Analysis of whole transcriptome RNA-seq data reveals many alternative splicing events in soybean roots under drought stress conditions. Genes 11:1520 doi: 10.3390/genes11121520 |
[88] |
Li S, Yu X, Cheng Z, Zeng C, Li W, et al. 2020. Large-scale analysis of the cassava transcriptome reveals the impact of cold stress on alternative splicing. Journal of Experimental Botany 71:422−34 doi: 10.1093/jxb/erz444 |
[89] |
Barta A, Kalyna M, Reddy ASN. 2010. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants. The Plant Cell 22:2926−2929 doi: 10.1105/tpc.110.078352 |
[90] |
Weng X, Zhou X, Xie S, Gu J, Wang Z. 2021. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress. Plant Physiology and Biochemistry 160:130−42 doi: 10.1016/j.plaphy.2021.01.016 |
[91] |
Chen Y, Weng X, Zhou X, Gu J, Hu Q, et al. 2021. Overexpression of cassava RSZ21b enhances drought tolerance in Arabidopsis. Journal of Plant Physiology 268:153574 doi: 10.1016/j.jplph.2021.153574 |
[92] |
Albaqami M, Laluk K, Reddy ASN. 2019. The Arabidopsis splicing regulator SR45 confers salt tolerance in a splice isoform-dependent manner. Plant Molecular Biology 100:379−90 doi: 10.1007/s11103-019-00864-4 |