[1]

Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. 2020. Recent advances and challenges in food-borne allergen detection. Trends in Analytical Chemistry 132:116050

doi: 10.1016/j.trac.2020.116050
[2]

Sicherer SH, Sampson HA. 2014. Food allergy: Epidemiology, pathogenesis, diagnosis, and treatment. The Journal of Allergy and Clinical Immunology 133:291−307. E5

doi: 10.1016/j.jaci.2013.11.020
[3]

Blanc F, Bernard H, Alessandri S, Bublin M, Paty E, et al. 2008. Update on optimized purification and characterization of natural milk allergens. Molecular Nutrition & Food Research 52:S166−S175

doi: 10.1002/mnfr.200700283
[4]

Villa C, Costa J, Oliveira MBPP, Mafra I. 2018. Bovine milk allergens: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 17:137−64

doi: 10.1111/1541-4337.12318
[5]

He S, Li X, Gao J, Tong P, Chen H. 2017. Development of sandwich ELISA for testing bovine β-lactoglobulin allergenic residues by specific polyclonal antibody against human IgE binding epitopes. Food Chemistry 227:33−40

doi: 10.1016/j.foodchem.2017.01.060
[6]

He S, Li X, Wu Y, Wu S, Wu Z, et al. 2018. A novel sandwich enzyme-linked immunosorbent assay with covalently bound monoclonal antibody and gold probe for sensitive and rapid detection of bovine β-lactoglobulin. Analytical and Bioanalytical Chemistry 410:3693−703

doi: 10.1007/s00216-018-1019-5
[7]

Wu X, He W, Ji K, Wan W, Hu D, et al. 2013. A simple and fast detection method for bovine milk residues in foods: A 2-site monoclonal antibody immunochromatography assay. Journal of Food Science 78:M452−M457

doi: 10.1111/1750-3841.12051
[8]

Haneda Y, Kadowaki S, Furui M, Taketani T. 2021. A pediatric case of food-dependent exercise-induced anaphylaxis due to rice bran. Asia Pacific Allergy 11:e4

doi: 10.5415/apallergy.2021.11.e4
[9]

Fiocchi A, Restani P, Bernardini R, Lucarelli S, Lombardi G, et al. 2006. A hydrolysed rice-based formula is tolerated by children with cow's milk allergy: A multi-centre study. Clinical & Experimental Allergy 36:311−16

doi: 10.1111/j.1365-2222.2006.02428.x
[10]

Wang W, Zhu X, Teng S, Xu X, Zhou G. 2018. Development and validation of a surface plasmon resonance biosensor for specific detection of porcine serum albumin in Food. Journal of AOAC International 101:1868−72

doi: 10.5740/jaoacint.17-0356
[11]

Qi K, Liu T, Yang Y, Zhang J, Yin J, et al. 2019. A rapid immobilized trypsin digestion combined with liquid chromatography – Tandem mass spectrometry for the detection of milk allergens in baked food. Food Control 102:179−87

doi: 10.1016/j.foodcont.2019.03.017
[12]

Terheggen-Lagro SWJ, Khouw IMSL, Schaafsma A, Wauters EAK. 2002. Safety of a new extensively hydrolysed formula in children with cow's milk protein allergy: A double blind crossover study. BMC Pediatrics 2:10

doi: 10.1186/1471-2431-2-10
[13]

Allgöwer S, Hartmann CA, Lipinski C, Mahler V, Randow S, et al. 2020. LAMP-LFD based on isothermal amplification of multicopy gene ORF160b: Applicability for highly sensitive low-tech screening of allergenic soybean (Glycine max) in food. Foods 9:1741

doi: 10.3390/foods9121741
[14]

Ronkainen NJ, Halsall HB, Heineman WR. 2010. Electrochemical biosensors. Chemical Society Reviews 39:1747−63

doi: 10.1039/b714449k
[15]

Ruiz-Valdepenas Montiel V, Campuzano S, Conzuelo F, Torrente-Rodríguez RM, Gamella M, et al. 2015. Electrochemical magnetoimmunosensing platform for determination of the milk allergen beta-lactoglobulin. Talanta 131:156−62

doi: 10.1016/j.talanta.2014.07.076
[16]

Surucu O, Abaci S. 2019. Electrochemical determination of β-lactoglobulin in whey proteins. Journal of Food Measurement and Characterization 14:11−19

doi: 10.1007/s11694-019-00262-w
[17]

Xu S, Dai B, Zhao W, Jiang L, Huang H. 2020. Electrochemical detection of beta-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO4 microspheres. Analytica Chimica Acta 1120:1−10

doi: 10.1016/j.aca.2020.04.066
[18]

Hong J, Wang Y, Zhu L, Jiang L. 2020. An electrochemical sensor based on gold-nanocluster-modified graphene screen-printed electrodes for the detection of β-lactoglobulin in Milk. Sensors 20:3956

doi: 10.3390/s20143956
[19]

Liu L, Zhou Y, Liu S, Xu M. 2018. The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem 5:6−19

doi: 10.1002/celc.201700931
[20]

Qin J, Cho M, Lee Y. 2019. Ferrocene-encapsulated Zn zeolitic imidazole framework (ZIF-8) for optical and electrochemical sensing of amyloid-beta oligomers and for the early diagnosis of alzheimer's disease. ACS Applied Materials & Interfaces 11:11743−48

doi: 10.1021/acsami.8b21425
[21]

Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, et al. 2009. Metal-organic framework materials as catalysts. Chemical Society Reviews 38:1450−59

doi: 10.1039/b807080f
[22]

Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, et al. 2006. Metal-organic frameworks as efficient materials for drug delivery. Angewandte Chemie International Edition 45:5974−78

doi: 10.1002/anie.200601878
[23]

An J, Geib SJ, Rosi NL. 2009. Cation-triggered drug release from a porous zinc-adeninate metal-organic framework. Journal of the American Chemical Society 131:8376−77

doi: 10.1021/ja902972w
[24]

Taylor-Pashow KML, Della Rocca J, Xie Z, Tran S, Lin W. 2009. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. Journal of the American Chemical Society 131:14261−63

doi: 10.1021/ja906198y
[25]

Guo J, Yuan C, Yan Q, Duan Q, Li X, et al. 2018. An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue. Biosensors and Bioelectronics 105:103−8

doi: 10.1016/j.bios.2018.01.036
[26]

Ma X, Qian K, Ejeromedoghene O, Kandawa-Schulz M, Song W, et al. 2021. p-Co-BDC/AuNPs-based multiple signal amplification for ultra-sensitive electrochemical determination of miRNAs. Analytica chimica acta 1183:338979

doi: 10.1016/j.aca.2021.338979
[27]

Patir A, Hwang GB, Nair SP, Allan E, Parkin IP. 2018. Photobactericidal activity of dual dyes encapsulated in silicone enhanced by silver nanoparticles. ACS Omega 3:6779−86

doi: 10.1021/acsomega.8b00552
[28]

Chen C, Li N, Wang B, Yuan S, Yu L. 2020. Advanced pillared designs for two-dimensional materials in electrochemical energy storage. Nanoscale Advances 2:5496−503

doi: 10.1039/D0NA00593B
[29]

Alshehri AA, Malik MA. 2020. Facile one-pot biogenic synthesis of Cu-Co-Ni trimetallic nanoparticles for enhanced photocatalytic dye degradation. Catalysts 10:1138

doi: 10.3390/catal10101138
[30]

Singh S, Kaushal S, Kaur J, Kaur G, Mittal S, et al. 2021. CaFu MOF as an efficient adsorbent for simultaneous removal of imidacloprid pesticide and cadmium ions from wastewater. Chemosphere 272:129648

doi: 10.1016/j.chemosphere.2021.129648
[31]

Dincă M, Long JR. 2008. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angewandte Chemie (International ed. in English) 47:6766−79

doi: 10.1002/anie.200801163
[32]

Xue S, Zhou X, Sang W, Wang C, Lu H, et al. 2021. Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy. Bioactive Materials 6:2372−89

doi: 10.1016/j.bioactmat.2021.01.017
[33]

Chang J, Lv W, Li Q, Li H, Li F. 2020. One-step synthesis of methylene blue-encapsulated zeolitic imidazolate framework for dual-signal fluorescent and homogeneous electrochemical biosensing. Analytical Chemistry 92:8959−64

doi: 10.1021/acs.analchem.0c00952
[34]

Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, et al. 2004. Nomenclature of the proteins of cows' milk - sixth revision. Journal of Dairy Science 87:1641−74

doi: 10.3168/jds.S0022-0302(04)73319-6
[35]

Yamanaka Y, Matsugano S, Yoshikawa Y, Orino K. 2016. Binding analysis of human immunoglobulin G as a zinc-binding protein. Antibodies 5:13

doi: 10.3390/antib5020013
[36]

Marx PF, Bouma BN, Meijers JCM. 2002. Role of zinc ions in activation and inactivation of thrombin-activatable fibrinolysis inhibitor. Biochemistry 41:1211−16

doi: 10.1021/bi0115683
[37]

Datta S, Leberman R, Rabin B. 1959. Relationship between proton and metal binding by some peptides, amino-acid amides and amino-acids. Nature 183:745−46

doi: 10.1038/183745a0
[38]

Arancibia V, Peña C, Segura R. 2006. Evaluation of powdered infant formula milk as chelating agent for copper under simulated gastric conditions of a baby's stomach. Analytical Sciences 22:1197−200

doi: 10.2116/analsci.22.1197
[39]

Eccles GN. 1991. Recent advances in pulse cyclic and square-wave cyclic voltammetric analysis. Critical Reviews in Analytical Chemistry 22:345−80

doi: 10.1080/10408349108051639
[40]

Lovrić M, Osteryoung J. 1982. Theory of differential normal pulse voltammetry. Electrochimica Acta 27:963−68

doi: 10.1016/0013-4686(82)80220-X