[1]

Sun JL, Li JY, Wang MJ, Song ZT, Liu JX. 2021. Protein quality control in plant organelles: current progress and future perspectives. Molecular Plant 14:95−114

doi: 10.1016/j.molp.2020.10.011
[2]

Liu JX, Howell SH. 2010. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. The Plant Cell 22:2930−42

doi: 10.1105/tpc.110.078154
[3]

Iwata Y, Koizumi N. 2012. Plant transducers of the endoplasmic reticulum unfolded protein response. Trends in Plant Science 17:720−27

doi: 10.1016/j.tplants.2012.06.014
[4]

Liu JX, Howell SH. 2016. Managing the protein folding demands in the endoplasmic reticulum of plants. New Phytologist 211:418−28

doi: 10.1111/nph.13915
[5]

Howell SH. 2021. Evolution of the unfolded protein response in plants. Plant, Cell & Environment 44:2625−35

doi: 10.1111/pce.14063
[6]

Liu J, Wu MW, Liu CM. 2022. Cereal endosperms: development and storage product accumulation. Annual Review of Plant Biology 73:255−91

doi: 10.1146/annurev-arplant-070221-024405
[7]

Fontes EB, Shank BB, Wrobel RL, Moose SP, Obrian GR, et al. 1991. Characterization of an immunoglobulin binding-protein homolog in the maize floury-2 endosperm mutant. The Plant Cell 3:483−96

doi: 10.1105/tpc.3.5.483
[8]

Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA, Larkins BA. 1997. Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. PNAS 94:7094−97

doi: 10.1073/pnas.94.13.7094
[9]

Wang G, Qi WW, Wu Q, Yao DS, Zhang JS, et al. 2014. Identification and characterization of maize floury4 as a novel semidominant opaque mutant that disrupts protein body assembly. Plant Physiology 165:582−94

doi: 10.1104/pp.114.238030
[10]

Pastor-Cantizano N, Ko DK, Angelos E, Pu Y, Brandizzi F. 2020. Functional diversification of ER stress responses in Arabidopsis. Trends in Biochemical Sciences 45:123−36

doi: 10.1016/j.tibs.2019.10.008
[11]

Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. 2013. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. The Plant Cell 25:1416−29

doi: 10.1105/tpc.113.110684
[12]

Srivastava R, Chen Y, Deng Y, Brandizzi F, Howell SH. 2012. Elements proximal to and within the transmembrane domain mediate the organelle-to-organelle movement of bZIP28 under ER stress conditions. The Plant Journal 70:1033−42

doi: 10.1111/j.1365-313X.2012.04943.x
[13]

Sun L, Lu SJ, Zhang SS, Zhou SF, Sun L, et al. 2013. The lumen-facing domain is important for the biological function and organelle-to-organelle movement of bZIP28 during ER stress in Arabidopsis. Molecular Plant 6:1605−15

doi: 10.1093/mp/sst059
[14]

Liu JX, Srivastava R, Che P, Howell SH. 2007. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. The Plant Cell 19:4111−19

doi: 10.1105/tpc.106.050021
[15]

Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, et al. 2010. Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Science Signaling 3:ra69

doi: 10.1126/scisignal.2001140
[16]

Iwata Y, Ashida M, Hasegawa C, Tabara K, Mishiba K, et al. 2017. Activation of the Arabidopsis membrane-bound transcription factor bZIP28 is mediated by site-2 protease, but not site-1 protease. The Plant Journal 91:408−15

doi: 10.1111/tpj.13572
[17]

Gao H, Brandizzi F, Benning C, Larkin RM. 2008. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. PNAS 105:16398−403

doi: 10.1073/pnas.0808463105
[18]

Liu JX, Howell SH. 2010. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes inArabidopsis. The Plant Cell 22:782−96

doi: 10.1105/tpc.109.072173
[19]

Afrin T, Diwan D, Sahawneh K, Pajerowska-Mukhtar K. 2020. Multilevel regulation of endoplasmic reticulum stress responses in plants: where old roads and new paths meet. Journal of Experimental Botany 71:1659−67

doi: 10.1093/jxb/erz487
[20]

Iwata Y, Koizumi N. 2005. An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. PNAS 102:5280−85

doi: 10.1073/pnas.0408941102
[21]

Deng Y, Humbert S, Liu JX, Srivastava R, Rothstein SJ, et al. 2011. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. PNAS 108:7247−52

doi: 10.1073/pnas.1102117108
[22]

Song ZT, Sun L, Lu SJ, Tian Y, Ding Y, et al. 2015. Transcription factor interaction with COMPASS-like complex regulates histone H3K4 trimethylation for specific gene expression in plants. PNAS 112:2900−5

doi: 10.1073/pnas.1419703112
[23]

Zhang SS, Yang H, Ding L, Song ZT, Ma H, et al. 2017. Tissue-specific transcriptomics reveals an important role of the unfolded protein response in maintaining fertility upon heat stress in Arabidopsis. Plant Cell 29:1007−23

doi: 10.1105/tpc.16.00916
[24]

Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, et al. 2011. Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. The Plant Journal 65:675−89

doi: 10.1111/j.1365-313X.2010.04453.x
[25]

Hayashi S, Takahashi H, Wakasa Y, Kawakatsu T, Takaiwa F. 2013. Identification of a cis-element that mediates multiple pathways of the endoplasmic reticulum stress response in rice. The Plant Journal 74:248−57

doi: 10.1111/tpj.12117
[26]

Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F. 2012. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. The Plant Journal 69:946−56

doi: 10.1111/j.1365-313X.2011.04844.x
[27]

Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, et al. 2012. Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Molecular Plant 5:504−14

doi: 10.1093/mp/ssr115
[28]

Wang QL, Sun AZ, Chen ST, Chen LS, Guo FQ. 2018. SPL6 represses signalling outputs of ER stress in control of panicle cell death in rice. Nature Plants 4:280−88

doi: 10.1038/s41477-018-0131-z
[29]

Liu XH, Lyu YS, Yang W, Yang ZT, Lu SJ, et al. 2020. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal 18:1317−29

doi: 10.1111/pbi.13297
[30]

Sandhu J, Irvin L, Liu K, Staswick P, Zhang C, et al. 2021. Endoplasmic reticulum stress pathway mediates the early heat stress response of developing rice seeds. Plant, Cell & Environment 44:2604−24

doi: 10.1111/pce.14103
[31]

Shewry PR, Halford NG. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. Journal of Experimental Botany 53:947−58

doi: 10.1093/jexbot/53.370.947
[32]

Pfister B, Zeeman SC. 2016. Formation of starch in plant cells. Cellular and Molecular Life Sciences 73:2781−807

doi: 10.1007/s00018-016-2250-x
[33]

Crofts N, Nakamura Y, Fujita N. 2017. Critical and speculative review of the roles of multi-protein complexes in starch biosynthesis in cereals. Plant Science 262:1−8

doi: 10.1016/j.plantsci.2017.05.007
[34]

Baysal C, He W, Drapal M, Villorbina G, Medina V, et al. 2020. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. PNAS 117:26503−12

doi: 10.1073/pnas.2014860117
[35]

Li Y, Fan C, Xing Y, Yun P, Luo L, et al. 2014. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics 46:398−404

doi: 10.1038/ng.2923
[36]

Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, et al. 2007. Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiology 144:2009−23

doi: 10.1104/pp.107.102533
[37]

Zhang L, Ren YL, Lu BY, Yang CY, Feng ZM, et al. 2016. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany 67:633−47

doi: 10.1093/jxb/erv469
[38]

Fu FF, Xue HW. 2010. Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiology 154:927−38

doi: 10.1104/pp.110.159517
[39]

Xu JJ, Zhang XF, Xue HW. 2016. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. Journal of Experimental Botany 67:6399−411

doi: 10.1093/jxb/erw409
[40]

Bello BK, Hou Y, Zhao J, Jiao G, Wu Y, et al. 2019. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). Plant Biotechnology Journal 17:1222−35

doi: 10.1111/pbi.13048
[41]

Xiong Y, Ren Y, Li W, Wu F, Yang W, et al. 2019. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. Journal of Experimental Botany 70:3765−80

doi: 10.1093/jxb/erz168
[42]

Feng T, Wang L, Li L, Liu Y, Chong K, et al. 2022. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm. New Phytologist 234:77−92

doi: 10.1111/nph.17990
[43]

He W, Wang L, Lin Q, Yu F. 2021. Rice seed storage proteins: biosynthetic pathways and the effects of environmental factors. Journal of Integrative Plant Biology 63:1999−2019

doi: 10.1111/jipb.13176
[44]

Kawakatsu T, Yamamoto MP, Touno SM, Yasuda H, Takaiwa F. 2009. Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. The Plant Journal 59:908−20

doi: 10.1111/j.1365-313X.2009.03925.x
[45]

Yamamoto MP, Onodera Y, Touno SM, Takaiwa F. 2006. Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiology 141:1694−707

doi: 10.1104/pp.106.082826
[46]

Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. 2009. Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant and Cell Physiology 50:1532−43

doi: 10.1093/pcp/pcp098
[47]

Ohta M, Takaiwa F. 2020. OsERdj7 is an ER-resident J-protein involved in ER quality control in rice endosperm. Journal of Plant Physiology 245:153109

doi: 10.1016/j.jplph.2019.153109
[48]

Han X, Wang Y, Liu X, Jiang L, Ren Y, et al. 2012. The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. Journal of Experimental Botany 63:121−30

doi: 10.1093/jxb/err262
[49]

Yang W, Xu P, Zhang J, Zhang S, Li Z, et al. 2022. OsbZIP60-mediated unfolded protein response regulates grain chalkiness in rice. Journal of Genetics and Genomics 49:414−26

doi: 10.1016/j.jgg.2022.02.002
[50]

Strasser R. 2018. Protein quality control in the endoplasmic reticulum of plants. Annual Review of Plant Biology 69:147−72

doi: 10.1146/annurev-arplant-042817-040331
[51]

Ohta M, Takaiwa F. 2015. OsHrd3 is necessary for maintaining the quality of endoplasmic reticulum-derived protein bodies in rice endosperm. Journal of Experimental Botany 66:4585−93

doi: 10.1093/jxb/erv229
[52]

Qian D, Chen G, Tian L, Qu LQ. 2018. OsDER1 is an ER-associated protein degradation factor that responds to ER stress. Plant Physiology 178:402−12

doi: 10.1104/pp.18.00375
[53]

Xu RF, Liu XS, Li J, Qin RY, Wei PC. 2021. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nature Plants 7:888−92

doi: 10.1038/s41477-021-00942-w
[54]

Wang J, Chen ZC, Zhang Q, Meng SS, Wei CX. 2020. The NAC Transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiology 184:1775−91

doi: 10.1104/pp.20.00984