[1] |
Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholtz D, et al. 1985. A simple and general-method for transferring genes into plants. Science 227:1229−31 doi: 10.1126/science.227.4691.1229 |
[2] |
Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, et al. 2008. Gene expression in developing watermelon fruit. BMC Genomics 9:275 doi: 10.1186/1471-2164-9-275 |
[3] |
Choi PS, Soh WY, Kim YS, Yoo OJ, Liu JR. 1994. Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Reports 13:344−48 doi: 10.1007/BF00232634 |
[4] |
Akashi K, Morikawa K, Yokota A. 2005. Agrobacterium-mediated transformation system for the drought and excess light stress-tolerant wild watermelon (Citrullus lanatus). Plant Biotechnology 22:13−18 doi: 10.5511/plantbiotechnology.22.13 |
[5] |
Suratman F, Huyop F, Parveez GKA. 2009. In vitro shoot regeneration of Citrullus vulgaris schrad (watermelon). Biotechnology 8:393−404 doi: 10.3923/biotech.2009.393.404 |
[6] |
Cho MA, Moon CY, Liu JR, Choi PS. 2008. Agrobacterium-mediated transformation in Citrullus lanatus. Biologia Plantarum 52:365−69 doi: 10.1007/s10535-008-0076-6 |
[7] |
Yu TA, Chiang CH, Wu HW, Li CM, Yang CF, et al. 2011. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W. Plant Cell Reports 30:359−71 doi: 10.1007/s00299-010-0951-4 |
[8] |
Ren Y, Guo S, Zhang J, He H, Sun H, et al. 2017. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiology 176:836−50 doi: 10.1104/pp.17.01290 |
[9] |
Tian S, Jiang L, Gao Q, Zhang J, Zong M, et al. 2017. Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Reports 36:399−406 doi: 10.1007/s00299-016-2089-5 |
[10] |
Wang Y, Wang J, Guo S, Tian S, Zhang J, et al. 2021. CRISPR/Cas9-mediated mutagenesis of ClBG1 decreased seed size and promoted seed germination in watermelon. Horticulture Research 8:70 doi: 10.1038/s41438-021-00506-1 |
[11] |
Godwin I, Todd G, Ford-Lloyd B, Newbury HJ. 1991. The effects of acetosyringone and PH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Reports 9:671−75 doi: 10.1007/BF00235354 |
[12] |
Vengadesan G, Anand RP, Selvaraj N, Perl-Treves R, Ganapathi A. 2005. Transfer and expression of nptII and bar genes in cucumber (Cucumber Sativus L. ). In Vitro Cellular & Developmental Biology - Plant 41:17−21 |
[13] |
Huang YC, Chiang CH, Li CM, Yu TA. 2011. Transgenic watermelon lines expressing the nucleocapsid gene of Watermelon silver mottle virus and the role of thiamine in reducing hyperhydricity in regenerated shoots. Plant Cell, Tissue and Organ Culture 106:21−29 doi: 10.1007/s11240-010-9889-z |
[14] |
Liu L, Gu Q, Ijaz R, Zhang J, Ye Z. 2016. Generation of transgenic watermelon resistance to Cucumber mosaic virus facilitated by an effective Agrobacterium-mediated transformation method. Scientia Horticulturae 205:32−38 doi: 10.1016/j.scienta.2016.04.013 |
[15] |
Zhang R, Chang J, Li J, Lan G, Xuan C, et al. 2021. Disruption of the bHLH transcription factor Abnormal Tapetum 1 causes male sterility in watermelon. Horticulture Research 8:258 doi: 10.1038/s41438-021-00695-9 |
[16] |
Xing H, Dong L, Wang Z, Zhang H, Han C, et al. 2014. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology 14:327 doi: 10.1186/s12870-014-0327-y |
[17] |
Jia H, Wang N. 2014. Targeted genome editing of sweet orange using Cas9/sgRNA. PloS One 9:e93806 doi: 10.1371/journal.pone.0093806 |
[18] |
Ren C, Liu X, Zhang Z, Wang Y, Duan W, et al. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports 6:32289 doi: 10.1038/srep32289 |
[19] |
Guo S, Zhang J, Sun H, Salse J, J Lucas WJ, et al. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics 45:51−58 doi: 10.1038/ng.2470 |
[20] |
Ren Y, Li M, Guo S, Sun H, Zhao J, et al. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. The Plant Cell 33:1554−73 doi: 10.1093/plcell/koab055 |
[21] |
Zhang J, Guo S, Ji G, Zhao H, Sun H, et al. 2020. A unique chromosome translocation disrupting ClWIP1 leads to gynoecy in watermelon. The Plant Journal 101:265−77 doi: 10.1111/tpj.14537 |
[22] |
Chang J, Guo Y, Yan J, Zhang Z, Yuan L, et al. 2021. The role of watermelon caffeic acid O-methyltransferase (ClCOMT1) in melatonin biosynthesis and abiotic stress tolerance. Horticulture Research 8:210 doi: 10.1038/s41438-021-00645-5 |
[23] |
Guo H, Guo H, Zhang L, Fan Y, Fan Y, et al. 2019. SELTP-assembled battery drives totipotency of somatic plant cell. Plant Biotechnology Journal 17:1188−90 doi: 10.1111/pbi.13107 |
[24] |
Nanasato Y, Konagaya KI, Okuzaki A, Tsuda M, Tabei Y. 2013. Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks. Plant Biotechnology Reports 7:267−76 doi: 10.1007/s11816-012-0260-1 |
[25] |
Li Q, Wu G, Zhao Y, Wang B, Zhao B, et al. 2020. CRISPR/Cas9-mediated knockout and overexpression studies reveal a role of maize phytochrome C in regulating flowering time and plant height. Plant Biotechnology Journal 18:2520−32 doi: 10.1111/pbi.13429 |
[26] |
Azeez A, Busov V. 2021. CRISPR/Cas9-mediated single and biallelic knockout of poplar STERILE APETALA (PopSAP) leads to complete reproductive sterility. Plant Biotechnology Journal 19:23−25 doi: 10.1111/pbi.13451 |
[27] |
Liu Y, Wang Y, Xu S, Tang X, Zhao J, et al. 2019. Efficient genetic transformation and CRISPR/Cas9-mediated genome editing in Lemna aequinoctialis. Plant Biotechnology Journal 17:2143−52 doi: 10.1111/pbi.13128 |
[28] |
Sanford JC. 1990. Biolistic plant transformation. Physiologia Plantarum 79:206−9 doi: 10.1111/j.1399-3054.1990.tb05888.x |
[29] |
Potrykus I. 1990. Gene transfer to cereals: an assessment. Nature Biotechnology 8:535−42 doi: 10.1038/nbt0690-535 |
[30] |
Vasudevan V, Siva R, Krishnan V, Manickavasagam M. 2020. Polyamines, sonication and vacuum infiltration enhances the Agrobacterium-mediated transformation in watermelon (Citrullus lanatus Thunb.). South African Journal of Botany 128:333−38 |
[31] |
Li Y, Liu Y, Wang Y, Ding Y, Wang S, et al. 2020. Effects of seedling age on the growth stage and yield formation of hydroponically grown long-mat rice seedlings. Journal of Integrative Agriculture 19:1755−67 doi: 10.1016/S2095-3119(19)62756-5 |
[32] |
Tinni TBR, Ali MA, Mehraj H, Shiam IH, Jamal Uddin AFM. 2014. Influence of seedling age on growth and yield of brinjal (Solanum Melongena L.). Bangladesh Research Publication Journal 10:170−74 |
[33] |
Lin J, Zhou B, Yang Y, Mei J, Zhao X, et al. 2009. Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Reports 28:1065−74 doi: 10.1007/s00299-009-0706-2 |
[34] |
de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC. 2009. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Reports 28:387−95 doi: 10.1007/s00299-008-0646-2 |
[35] |
Wu H, Sparks C, Amoah B, Jones HD. 2003. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports 21:659−68 doi: 10.1007/s00299-002-0564-7 |
[36] |
Nishibayashi S, Kaneko H, Hayakawa T. 1996. Transformation of cucumber (Cucumis sativus L.) plants using Agrobacterium tumefaciens and regeneration from hypocotyl explants. Plant Cell Reports 15:809−14 doi: 10.1007/BF00233145 |
[37] |
Padmanabhan P, Sahi SV. 2009. Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes. Plant Cell Reports 28:31−40 doi: 10.1007/s00299-008-0618-6 |
[38] |
Bakshi S, Sadhukhan A, Mishra S, Sahoo L. 2011. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Reports 30:2281−92 doi: 10.1007/s00299-011-1133-8 |
[39] |
Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, et al. 2015. Agrobacterium-mediated in planta genetic transformation of sugarcane setts. Plant Cell Reports 34:1835−48 doi: 10.1007/s00299-015-1831-8 |
[40] |
Hiei Y, Komari T, Kubo T. 1997. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology 35:205−18 |
[41] |
Cho SM, Oh SA, Choi YS, Park SB. 2014. Effect of plant growth regulators on regeneration from the cotyledon explants in watermelon (Citrullus lanatus (thunb.) Matsum. & Nakai). Korean Journal of Plant Resources 27:51−59 doi: 10.7732/kjpr.2014.27.1.051 |
[42] |
Compton ME. 2000. Interaction between explant size and cultivar affects shoot organogenic competence of watermelon cotyledons. HortScience 5:749−50 doi: 10.21273/hortsci.35.4.749 |
[43] |
Selvaraj N, Kasthurirengan S, Vasudevan A, Manickavasagam M, Choi CW, et al. 2010. Evaluation of green fluorescent protein as a reporter gene and phosphinothricin as the selective agent for achieving a higher recovery of transformants in cucumber (Cucumis sativus L. cv. Poinsett76) via Agrobacterium tumefaciens. In Vitro Cellular & Developmental Biology - Plant 46:329−37 doi: 10.1007/s11627-010-9288-5 |
[44] |
Mujaju C. 2011. Local-level assessment of watermelon genetic diversity in a village in Masvingo Province, Zimbabwe: Structure and dynamics of landraces on farm. African Journal of Agricultural Research 6:5822−34 doi: 10.5897/ajar11.100 |
[45] |
Gentry LO, Macko V, Lind R, Heilman A. 1985. Ticarcillin plus clavulanic acid (Timentin) therapy for osteomyelitis. The American Journal of Medicine 79:116−21 doi: 10.1016/0002-9343(85)90142-1 |
[46] |
Nauerby B, Billing K, Wyndaele R. 1997. Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Science 123:169−77 doi: 10.1016/S0168-9452(96)04569-4 |
[47] |
Cheng ZM, Schnurr JA, Kapaun JA. 1998. Timentin as an alternative antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Plant Cell Reports 17:646−49 doi: 10.1007/s002990050458 |
[48] |
Li ZN, Liu GF, Fang F, Bao MZ. 2007. Adventitious shoot regeneration of Platanus acerifolia Willd. facilitated by Timentin, an antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. Forestry Studies in China 9:14−18 doi: 10.1007/s11632-007-0003-5 |
[49] |
Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, et al. 2014. Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cellular & Developmental Biology Plant 50:9−18 doi: 10.1007/s11627-013-9583-z |
[50] |
Hoerlein G. 1994. Glufosinate (phosphinothricin), a natural amino acid with unexpected herbicidal properties. In Reviews of Environmental Contamination and Toxicology, ed. Ware GW. vol 138. New York: Springer, New York. pp. 73–145 https://doi.org/10.1007/978-1-4612-2672-7_4 |
[51] |
Kutlesa NJ, Caveney S. 2001. Insecticidal activity of glufosinate through glutamine depletion in a caterpillar. Pest Management Science 57:25−32 doi: 10.1002/1526-4998(200101)57:1<25::AID-PS272>3.0.CO;2-I |
[52] |
Kang GR, Song HY, Kim DS. 2014. Toxicity and effects of the herbicide glufosinate-ammonium (Basta) on the marine medaka Oryzias dancena. Fisheries and Aquatic Sciences 17:105−13 doi: 10.5657/FAS.2014.0105 |
[53] |
Feng Q, Xiao L, He Y, Liu M, Wang J, et al. 2021. Highly efficient, genotype-independent transformation and gene editing in watermelon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene. Journal of Integrative Plant Biology 63:2038−42 doi: 10.1111/jipb.13199 |
[54] |
Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, et al. 2017. A multipurpose toolkit to enable advanced genome engineering in plants. The Plant Cell 29:1196−1217 doi: 10.1105/tpc.16.00922 |
[55] |
Lazo GR, Stein PA, Ludwig RA. 1991. A DNA transformation competent Arabidopsis genomic library in Agrobacterium. Biotechnology 6:963−67 doi: 10.1038/nbt1091-963 |
[56] |
Hood EE, Gelvin SB, Melchers LS, Hoekema A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2:208−18 doi: 10.1007/BF01977351 |
[57] |
Kaur N, Alok A, Shivani, Kaur N, Pandey P, et al. 2018. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics 18:89−99 doi: 10.1007/s10142-017-0577-5 |
[58] |
Srivastava DR, Andrianov VM, Piruzian ES. 1989. Tissue culture and plant regeneration of watermelon (Citrullus vulgaris Schrad. cv. Melitopolski). Plant Cell Reports 8:300−2 doi: 10.1007/BF00274135 |
[59] |
Parveez GKA, Ghazali H, Rahmat Z, Wagiran A, Suratman F. 2010. Cotyledon with hypocotyl segment as an explant for the production of transgenic Citrullus vulgaris Schrad (watermelon) mediated by Agrobacterium tumefaciens. Biotechnology 9:106−18 doi: 10.3923/biotech.2010.106.118 |
[60] |
Compton ME, Gray DJ. 1994. Adventitious shoot organogenesis and plant regeneration from cotyledons of tetraploid watermelon. HortScience 29:211−13 doi: 10.21273/HORTSCI.29.3.211 |