[1]

Wan XC. (Eds.) 2003. Chemical Constituents in Tea and their Properties. Beijing: China Agriculture Press. (in Chinese).

[2]

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34

doi: 10.1080/10408398.2018.1506907
[3]

Zeng L, Zhou Y, Gui J, Fu X, Mei X, et al. 2016. Formation of volatile tea constituent indole during the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry 64:5011−19

doi: 10.1021/acs.jafc.6b01742
[4]

Yang J, Zhou X, Wu S, Gu D, Zeng L, et al. 2021. Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International 142:110183

doi: 10.1016/j.foodres.2021.110183
[5]

Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nature Reviews Genetics 10:161−72

doi: 10.1038/nrg2522
[6]

Kouzarides T. 2007. Chromatin modifications and their function. Cell 128:693−705

doi: 10.1016/j.cell.2007.02.005
[7]

Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:1074−1080

doi: 10.1126/science.1063127
[8]

Hu Y, Lu Y, Zhao Y, Zhou D. 2019. Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress. Frontiers in Plant Science 10:1236

doi: 10.3389/fpls.2019.01236
[9]

Patrick RM, Huang X, Dudareva N, Li Y. 2021. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. Journal of Experimental Botany 72:3704−22

doi: 10.1093/jxb/erab072
[10]

Nützmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, et al. 2011. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. PNAS 108:14282−87

doi: 10.1073/pnas.1103523108
[11]

Zhou Y, Zeng L, Hou X, Liao Y, Yang Z. 2020. Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany 71:2172−85

doi: 10.1093/jxb/erz570
[12]

Berger SL. 2002. Histone modifications in transcriptional regulation. Current Opinion in Genetics & Development 12:142−48

doi: 10.1016/S0959-437X(02)00279-4
[13]

Alinsug MV, Chen F, Luo M, Tai R, Jiang L, et al. 2012. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of hda15 is driven by light. PLoS One 7:e30846

doi: 10.1371/journal.pone.0030846
[14]

Grandperret V, Nicolas-Francès V, Wendehenne D, Bourque S. 2014. Type-II histone deacetylases: elusive plant nuclear signal transducers. Plant, Cell & Environment 37:1259−69

doi: 10.1111/pce.12236
[15]

Mathis DJ, Oudet P, Wasylyk B, Chambon P. 1978. Effect of histone acetylation on structure and in vitro transcription of chromatin. Nucleic Acids Research 5:3523−48

doi: 10.1093/nar/5.10.3523
[16]

Minucci S, Pelicci PG. 2006. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Reviews Cancer 6:38−51

doi: 10.1038/nrc1779
[17]

Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, et al. 2001. Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. PNAS 98:87−92

doi: 10.1073/pnas.98.1.87
[18]

Su L, Deng B, Liu S, Li L, Hu B, et al. 2015. Isolation and characterization of an osmotic stress and ABA induced histone deacetylase in Arachis hygogaea. Frontiers in Plant Science 6:512

doi: 10.3389/fpls.2015.00512
[19]

Lee K, Park OS, Jung SJ, Seo PJ. 2016. Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis. Journal of Plant Physiology 191:95−100

doi: 10.1016/j.jplph.2015.12.006
[20]

Cui Y, Ling Y, Zhou J, Li X. 2015. Interference of the histone deacetylase inhibits pollen germination and pollen tube growth in Picea wilsonii mast. PLoS One 10:e0145661

doi: 10.1371/journal.pone.0145661
[21]

Zhang Y, Liu Y, Lu H, Li H. 2018. Transcriptome analysis of gene expression profiling in the suspension cells of Populus tomentosa treated by histone deacetylase inhibitor TSA. Journal of Beijing Forestry University 40:1−14

doi: 10.13332/j.1000-1522.20180158
[22]

Tiricz H, Nagy B, Ferenc G, Török K, Nagy I, et al. 2018. Relaxed chromatin induced by histone deacetylase inhibitors improves the oligonucleotide-directed gene editing in plant cells. Journal of Plant Research 131:179−89

doi: 10.1007/s10265-017-0975-8
[23]

Guo X, Lv Y, Ye Y, Liu Z, Zheng X, et al. 2021. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chemistry 339:128088

doi: 10.1016/j.foodchem.2020.128088
[24]

Zhang X, Gao H, Yang T, Wu H, Wang Y, et al. 2016. Al3+ -promoted fluoride accumulation in tea plants (Camellia sinensis) was inhibited by an anion channel inhibitor DIDS. Journal of the Science of Food and Agriculture 96:4224−30

doi: 10.1002/jsfa.7626
[25]

Gu D, Yang J, Wu S, Liao Y, Zeng L, et al. 2021. Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of tea (Camellia sinensis). Journal of Agricultural and Food Chemistry 69:1039−48

doi: 10.1021/acs.jafc.0c07220
[26]

Gendrel AV, Lippman Z, Martienssen R, Colot V. 2005. Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods 2:213−218

doi: 10.1038/nmeth0305-213
[27]

Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, et al. 2002. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30:5036−55

doi: 10.1093/nar/gkf660
[28]

Liu X, Yang S, Zhao M, Luo M, Yu C, et al. 2014. Transcriptional repression by histone deacetylases in plants. Molecular Plant 7:764−72

doi: 10.1093/mp/ssu033
[29]

Tanaka M, Kikuchi A, Kamada H. 2008. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiology 146:149−61

doi: 10.1104/pp.107.111674
[30]

Wu K, Tian L, Malik K, Brown D, Miki B. 2000. Functional analysis of HD2 histone deacetylase homologues in Arabidopsis thaliana. The Plant Journal 22:19−27

doi: 10.1046/j.1365-313x.2000.00711.x
[31]

Yuan L, Dai H, Zheng S, Huang R, Tong H. 2020. Genome-wide identification of the HDAC family proteins and functional characterization of CsHD2C, a HD2-type histone deacetylase gene in tea plant (Camellia sinensis L. O. Kuntze). Plant Physiology and Biochemistry 155:898−913

doi: 10.1016/j.plaphy.2020.07.047
[32]

Yang C, Shen W, Chen H, Chu L, Xu Y, et al. 2018. Characterization and subcellular localization of histone deacetylases and their roles in response to abiotic stresses in soybean. BMC Plant Biology 18:226

doi: 10.1186/s12870-018-1454-7
[33]

Zhao L, Lu J, Zhang J, Wu P, Yang S, et al. 2014. Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). Frontiers in Plant Science 5:760

doi: 10.3389/fpls.2014.00760
[34]

Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, et al. 2007. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryotic Cell 6:1656−64

doi: 10.1128/EC.00186-07
[35]

Jung JH, Park JH, Lee S, To TK, Kim JM, et al. 2013. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. The Plant Cell 25:4378−90

doi: 10.1105/tpc.113.118364
[36]

Liu X, Yu C, Duan J, Luo M, Wang K, et al. 2012. HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiology 158:119−29

doi: 10.1104/pp.111.184275
[37]

Xu F, Copeland C. 2012. Nuclear extraction from Arabidopsis thaliana. Bio-protocol 2:e306

doi: 10.21769/bioprotoc.306
[38]

Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W. 2002. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161:1307−20

doi: 10.1093/genetics/161.3.1307
[39]

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539−42

doi: 10.1093/sysbio/sys029