[1]

Quero-García J, Schuster M, Lopez-Ortega G, Charlot G. 2017. Sweet cherry varieties and improvement. In Cherries: Botany, Production and Uses, eds. Quero-García J, Iezzoni A, Pulawska J, Lang G. Wallingford: CAB International. pp. 60−94

[2]

Christensen JV. 1996. Rain-induced cracking of sweet cherries: Its causes and prevention. In Cherries: Crop Physiology, Production and Uses, eds. Webster AD, Looney NE. Wallingford: CAB International. pp. 297−330

[3]

Knoche M, Winkler A. 2017. Rain-induced cracking of sweet cherries. In Cherries: Botany, Production and Uses, eds. Quero-García J, Iezzoni A, Pulawska J, Lang G. Wallingford: CAB International. pp. 140−65 http://doi.org/10.1079/9781780648378.0140

[4]

Younce FL, Davis DC. 1995. A dynamic sensor for cherry firmness. Transaction of the American Society of Agricultural Engineers 38:1467−76

doi: 10.13031/2013.27972
[5]

Ross CF, Chauvin MA, Whiting M. 2009. Firmness evaluation of sweet cherries by a trained and consumer sensory panel. Journal of Texture Studies 40:554−70

doi: 10.1111/j.1745-4603.2009.00197.x
[6]

Zheng X, Yue C, Gallardo K, McCracken V, Luby J, et al. 2016. What attributes are consumers looking for in sweet cherries? Evidence from choice experiments Agricultural and Resource Economics Review 45:124−42

doi: 10.1017/age.2016.13
[7]

Quero-García J, Campoy JA, Barreneche T, Le Dantec L, Wenden B, et al. 2019a. Present and future of marker-assisted breeding in sweet and sour cherry. Acta Horticulturae 1235:1−14

doi: 10.17660/ActaHortic.2019.1235.1
[8]

Quero-García J, Iezzoni A, López-Ortega G, Peace C, Fouché M, et al. 2019b. Advances and challenges in cherry breeding. In Achieving Sustainable Cultivation of Temperate Zone Tree Fruits and Berries, ed. Lang GA. Cambridge: Burleigh Dodds Science Publishing Limited. pp. 55−88 http://doi.org/10.19103/AS.2018.0040.17

[9]

Iezzoni A, Wünsch A, Höfer M, Giovannini D, Jensen M, et al. 2017. Biodiversity, germplasm resources, and breeding methods. In Cherries: Botany, Production and Uses, eds. Quero-García J, Iezzoni A, Pulawska J, Lang G. Wallingford: CAB International. pp. 36-59 https://doi.org/10.1079/9781780648378.0036

[10]

Peace CP. 2017. DNA-informed breeding of rosaceous crops: promises, progress and prospects. Horticulture Research 4:17006

doi: 10.1038/hortres.2017.6
[11]

Vanderzande S, Piaskowski JL, Luo F, Edge-Garza DA, Klipfel J, et al. 2018. Crossing the finish line: how to develop diagnostic DNA tests as breeding tools after QTL discovery. Journal of Horticulture 5:1000228

doi: 10.4172/2376-0354.1000228
[12]

Peace CP, Oraguzie N, Sandefur P, Main D, Ru S, et al. 2016. After RosBREED: Developing and deploying new sweet cherry DNA tests. Project Report. Washington State Tree Fruit Research Commission, USA. https://treefruitresearch.org/report/after-rosbreed-developing-and-deploying-new-sweet-cherry-dna-tests/

[13]

Sandefur P, Oraguzie N, Peace C. 2016. A DNA test for routine prediction in breeding of sweet cherry fruit color, Pav-Rf-SSR. Molecular Breeding 36:33

doi: 10.1007/s11032-016-0458-y
[14]

Haldar S, Haendiges S, Edge-Garza DA, Oraguzie NC, Olmstead J, et al. 2010. Applying genetic markers for self-compatibility in the WSU sweet cherry breeding program. Acta Horticulturae 859:375−80

doi: 10.17660/ActaHortic.2010.859.45
[15]

Quero-García J, Fodor A, Reignier A, Capdeville G, Joly J, et al. 2014. QTL detection of important agronomic traits for sweet cherry breeding. Acta Horticulturae 1020:57−64

doi: 10.17660/ActaHortic.2014.1020.5
[16]

Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J. 2015. New insights into fruit firmness and weight control in sweet cherry. Plant Molecular Biology Reporter 33:783−96

doi: 10.1007/s11105-014-0773-6
[17]

Cai L, Quero-García J, Barreneche T, Dirlewanger E, Saski C, et al. 2019. A fruit firmness QTL identified on linkage group 4 in sweet cherry (Prunus avium L.) is associated with domesticated and bred germplasm. Scientific Reports 9:5008

doi: 10.1038/s41598-019-41484-8
[18]

Calle A, Balas F, Cai L, Iezzoni A, López-Corrales M, et al. 2020. Fruit size and firmness QTL alleles of breeding interest identified in a sweet cherry 'Ambrunes' × 'Sweetheart' population. Molecular Breeding 40:86

doi: 10.1007/s11032-020-01165-1
[19]

Quero-García J, Letourmy P, Campoy JA, Branchereau C, Malchev S, et al. 2021. Multi-year analyses on three populations reveal the first stable QTLs for tolerance to rain-induced fruit cracking in sweet cherry (Prunus avium L.). Horticulture Research 8:136

doi: 10.1038/s41438-021-00571-6
[20]

Calle A, Wünsch A. 2020. Multiple-population QTL mapping of maturity and fruit-quality traits reveals LG4 region as a breeding target in sweet cherry (Prunus avium L.). Horticulture Research 7:127

doi: 10.1038/s41438-020-00349-2
[21]

Crump WW, Peace C, Zhang Z, McCord P. 2022. Detection of breeding-relevant fruit cracking and fruit firmness Quantitative Trait Loci in sweet cherry via pedigree-based and genome-wide association approaches. Frontiers in Plant Science 13:823250

doi: 10.3389/fpls.2022.823250
[22]

Edge-Garza DA, Luby JJ, Peace C. 2015. Decision support for cost-efficient and logistically feasible marker-assisted seedling selection in fruit breeding. Molecular Breeding 35:223

doi: 10.1007/s11032-015-0409-z
[23]

Mackay JF, Wright CD, Bonfiglioli RG. 2008. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8

doi: 10.1186/1746-4811-4-8
[24]

Ganopoulos I, Argiriou A, Tsaftaris A. 2011. Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22:532−41

doi: 10.1016/j.foodcont.2010.09.040
[25]

Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry 49:853−60

doi: 10.1373/49.6.853
[26]

Gupta PK, Roy JK, Prasad M. 2001. Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science 80:524−35

[27]

He C, Holme J, Anthony J. 2014. SNP genotyping: the KASP assay. In Crop Breeding. Methods in Molecular Biology, eds. Fleury D, Whitford R. vol 1145. New York: Humana Press. pp. 75−86 https://doi.org/10.1007/978-1-4939-0446-4_7

[28]

Peace CP, Luby JJ, van de Weg WE, Bink MCAM, Iezzoni AF. 2014. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genetics & Genomes 10:1679−94

doi: 10.1007/s11295-014-0788-z
[29]

Cabe PR, Baumgarten A, Onan K, Luby JJ, Bedford DS. 2005. Using microsatellite analysis to verify breeding records: a study of 'Honeycrisp' and other cold-hard apple cultivars. HortScience 40:15−17

doi: 10.21273/HORTSCI.40.1.15
[30]

Ru S, Hardner C, Carter PA, Evans K, Main D, Peace C. 2016. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops. Horticulture Research 3:16015

doi: 10.1038/hortres.2016.15
[31]

McCord PH, Peters RW. 2021. The effects of aminoethoxyvinylglycine on fruit set in emasculated, hand-pollinated sweet cherry (Prunus avium L.). Journal of the American Pomological Society 75:157−64

[32]

Muñoz-Espinoza, C, Espinosa E, Bascuñán R, Tapia S, Meneses C, Almeida A. 2017. Development of a molecular marker for self-compatible S4' haplotype in sweet cherry (Prunus avium L.) using high-resolution melting. Plant Breeding 136:987−93

doi: 10.1111/pbr.12546
[33]

Zilsel J, Ma PH, Beatty JT. 1992. Derivation of a mathematical expression useful for the construction of complete genomic libraries. Gene 120:89−92

doi: 10.1016/0378-1119(92)90013-f
[34]

Ru S, Hardner C, Evans K, Main D, Carter PA, et al. 2021. Empirical evaluation of multi-trait DNA testing in an apple seedling population. Tree Genetics & Genomes 17:13

doi: 10.1007/s11295-021-01494-y
[35]

Ru S, Main D, Evans K, Peace C. 2015. Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genetics & Genomes 11:8

doi: 10.1007/s11295-015-0834-5
[36]

Christensen JV. 1972. Cracking in cherries. III. Determination of cracking susceptibility. Acta Agriculturae Scandinavica 22:128−36

doi: 10.1080/00015127209433471
[37]

Peace C, Bassil N, Main D, Ficklin S, Rosyara UR, et al. 2012. Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry. PLoS One 7:e48305

doi: 10.1371/journal.pone.0048305
[38]

Vanderzande S, Zheng P, Cai L, Barac G, Gasic K, et al. 2020. The cherry 6+9K SNP array: a cost-effective improvement to the cherry 6K SNP array for genetic studies. Scientific Reports 10:7613

doi: 10.1038/s41598-020-64438-x
[39]

Vanderzande S, Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, et al. 2019. High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. PloS One 14:e0210928

doi: 10.1371/journal.pone.0210928
[40]

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org

[41]

Bink M, Uimari P, Sillanpää M, Janss L, Jansen R. 2002. Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theoretical and Applied Genetics 104:751−62

doi: 10.1007/s00122-001-0796-x
[42]

Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, et al. 2014. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theoretical and Applied Genetics 127:1073−90

doi: 10.1007/s00122-014-2281-3
[43]

Tang Y, Liu X, Wang J, Li M, Wang Q, et al. 2016. GAPIT Version 2: An enhanced integrated tool for genomic association and prediction. The Plant Genome 9:plantgenome2015.11.0120

doi: 10.3835/plantgenome2015.11.0120