[1] |
Sarria S, Kruyer NS, Peralta-Yahya P. 2017. Microbial synthesis of medium-chain chemicals from renewables. Nature Biotechnology 35:1158−66 doi: 10.1038/nbt.4022 |
[2] |
Zhu Z, Hu Y, Teixeira PG, Pereira R, Chen Y, et al. 2020. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis 3:64−74 doi: 10.1038/s41929-019-0409-1 |
[3] |
Nagao K, Yanagita T. 2010. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacological Research 61:208−12 doi: 10.1016/j.phrs.2009.11.007 |
[4] |
Zentek J, Buchheitrenko S, Ferrara F, Vahjen W, Van Kessel AG, et al. 2011. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Animal Health Research Reviews 12:83−93 doi: 10.1017/S1466252311000089 |
[5] |
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, et al. 2021. Microbial production of advanced biofuels. Nature Reviews Microbiology 19:701−15 doi: 10.1038/s41579-021-00577-w |
[6] |
Yan Q, Pfleger BF. 2020. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering 58:35−46 doi: 10.1016/j.ymben.2019.04.009 |
[7] |
Bharathiraja B, Sridharan S, Sowmya V, Yuvaraj D, Praveenkumar R. 2017. Microbial oil - A plausible alternate resource for food and fuel application. Bioresource Technology 233:423−32 doi: 10.1016/j.biortech.2017.03.006 |
[8] |
Wu H, Lee J, Karanjikar M, San KY. 2014. Efficient free fatty acid production from woody biomass hydrolysate using metabolically engineeredEscherichia coli. Bioresource Technology 169:119−25 doi: 10.1016/j.biortech.2014.06.092 |
[9] |
Reddy MV, Kumar G, Mohanakrishna G, Shobana S, Al-Raoush RI. 2020. Review on the production of medium and small chain fatty acids through waste valorization and CO2 fixation. Bioresource Technology 309:123400 doi: 10.1016/j.biortech.2020.123400 |
[10] |
Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. 2011. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476:355−59 doi: 10.1038/nature10333 |
[11] |
Clomburg JM, Vick JE, Blankschien MD, Rodríguez-Moyá M, Gonzalez R. 2012. A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synthetic Biology 1:541−54 doi: 10.1021/sb3000782 |
[12] |
Clomburg JM, Blankschien MD, Vick JE, Chou A, Kim S, et al. 2015. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metabolic Engineering 28:202−12 doi: 10.1016/j.ymben.2015.01.007 |
[13] |
Wu J, Zhang X, Xia X, Dong M. 2017. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metabolic Engineering 41:115−24 doi: 10.1016/j.ymben.2017.03.012 |
[14] |
Wu J, Zhang X, Zhou P, Huang J, Xia X, et al. 2017. Improving metabolic efficiency of the reverse beta-oxidation cycle by balancing redox cofactor requirement. Metabolic Engineering 44:313−24 doi: 10.1016/j.ymben.2017.11.001 |
[15] |
Wu J, Wang Z, Duan X, Zhou P, Liu P, et al. 2019. Construction of artificial micro-aerobic metabolism for energy- and carbon-efficient synthesis of medium chain fatty acids in Escherichia coli. Metabolic Engineering 53:1−13 doi: 10.1016/j.ymben.2019.01.006 |
[16] |
Doshi R, Nguyen T, Chang G. 2013. Transporter-mediated biofuel secretion. PNAS 110:7642−47 doi: 10.1073/pnas.1301358110 |
[17] |
Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, et al. 2011. Engineering microbial biofuel tolerance and export using efflux pumps. Molecular Systems Biology 7:487 doi: 10.1038/msb.2011.21 |
[18] |
Lennen RM, Politz MG, Kruziki MA, Pfleger BF. 2013. Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. Journal of Bacteriology 195:135−44 doi: 10.1128/JB.01477-12 |
[19] |
Wu J, Wang Z, Zhang X, Zhou P, Xia X, et al. 2019. Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chemistry 272:628−34 doi: 10.1016/j.foodchem.2018.08.102 |
[20] |
Medema MH, de Rond T, Moore BS. 2021. Mining genomes to illuminate the specialized chemistry of life. Nature Reviews Genetics 9:553−71 doi: 10.1038/s41576-021-00363-7 |
[21] |
Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, et al. 2020. A computational framework to explore large-scale biosynthetic diversity. Nature Chemical Biology 16:60−68 doi: 10.1038/s41589-019-0400-9 |
[22] |
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, et al. 2018. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Molecular Biology and Evolution 35:543−8 doi: 10.1093/molbev/msx319 |
[23] |
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9:75 doi: 10.1186/1471-2164-9-75 |
[24] |
Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:1−19 doi: 10.1186/1471-2105-5-113 |
[25] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74 doi: 10.1093/molbev/msu300 |
[26] |
Wu J, Zhou L, Duan X, Peng H, Liu S, et al. 2021. Applied evolution: Dual dynamic regulations-based approaches in engineering intracellular malonyl-CoA availability. Metabolic Engineering 67:403−16 doi: 10.1016/j.ymben.2021.08.004 |
[27] |
Zhang Y, Li SZ, Li J, Pan X, Cahoon RE, et al. 2006. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. Journal of the American Chemical Society 128:13030−31 doi: 10.1021/ja0622094 |
[28] |
Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97:6640−45 doi: 10.1073/pnas.120163297 |
[29] |
Neidhardt FC, Bloch PL, Smith DF. 1974. Culture medium for enterobacteria. Journal of Bacteriology 119:736−47 doi: 10.1128/jb.119.3.736-747.1974 |
[30] |
Wu J, Bao M, Duan X, Zhou P, Chen C, et al. 2020. Developing a pathway-independent and full-autonomous global resource allocation strategy to dynamically switching phenotypic states. Nature Communications 11:5521 doi: 10.1038/s41467-020-19432-2 |
[31] |
Salvador López JM, Van Bogaert INA. 2021. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnology and Bioengineering 118:2184−201 doi: 10.1002/bit.27735 |
[32] |
Kim EM, Woo HM, Tian T, Yilmaz S, Javidpour P, et al. 2017. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metabolic Engineering 44:325−36 doi: 10.1016/j.ymben.2017.11.004 |
[33] |
Gupta A, Reizman IMB, Reisch CR, Prather KLJ. 2017. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nature Biotechnology 35:273−79 doi: 10.1038/nbt.3796 |