[1] |
Qian C, Ren N, Wang J, Xu Q, Chen X, et al. 2018. Effects of exogenous application of CPPU, NAA and GA4+7 on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chemistry 243:410−13 doi: 10.1016/j.foodchem.2017.09.150 |
[2] |
Xu Y, Zhang H, Zhong Y, Jiang N, Zhong X, et al. 2022. Comparative genomics analysis of bHLH genes in cucurbits identifies a novel gene regulating cucurbitacin biosynthesis. Horticulture Research 9:uhac038 doi: 10.1093/hr/uhac038 |
[3] |
Hu W, Su Y, Zhou J, Zhu H, Guo J, et al. 2022. Foliar application of silicon and selenium improves the growth, yield and quality characteristics of cucumber in field conditions. Scientia Horticulturae 294:110776 doi: 10.1016/j.scienta.2021.110776 |
[4] |
Sapara KK, Agarwal P, Gupta K, Agarwal PK. 2022. Expression of B. subtilis Phytase gene driven by fruit specific E8 promoter for enhanced minerals, metabolites and phytonutrient in cucumber fruit. Food Research International 156:111138 doi: 10.1016/j.foodres.2022.111138 |
[5] |
Ainamani HE, Bamwerinde WM, Rukundo GZ, Tumwesigire S, Mfitumukiza V, et al. 2021. Fruit and vegetable intake and mental health among family caregivers of people with dementia in Uganda. Mental Health & Prevention 24:200223 doi: 10.1016/j.mhp.2021.200223 |
[6] |
Qing Z, Shi Y, Han L, Li P, Zha Z, et al. 2022. Identification of seven undescribed cucurbitacins in Cucumis sativus (cucumber) and their cytotoxic activity. Phytochemistry 197:113123 doi: 10.1016/j.phytochem.2022.113123 |
[7] |
Chu X, Zhang L, Zhou Y, Fang Q. 2022. Cucurbitacin B alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome-mediated inflammation and reducing oxidative stress. Bioscience, Biotechnology, & Biochemistry 86:846−54 doi: 10.1093/bbb/zbac065 |
[8] |
Enders TA, Strader LC. 2015. Auxin activity: Past, present, and future. American Journal of Botany 102:180−96 doi: 10.3732/ajb.1400285 |
[9] |
Tan S, Luschnig C, Friml J. 2020. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signalling. Molecular Plant 14:151−65 doi: 10.1016/j.molp.2020.11.004 |
[10] |
Su L, Rahat S, Ren N, Kojima M, Takebayashi Y, et al. 2021. Cytokinin and auxin modulate cucumber parthenocarpy fruit development. Scientia Horticulturae 282:110026 doi: 10.1016/j.scienta.2021.110026 |
[11] |
Pan J, Sharif R, Xu X, Chen X. 2021. Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. Frontiers in Plant Science 11:627331 doi: 10.3389/fpls.2020.627331 |
[12] |
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, et al. 2011. The main auxin biosynthesis pathway in Arabidopsis. PNAS 108:18512−17 doi: 10.1073/pnas.1108434108 |
[13] |
Stepanova AN, Yun J, Robles LM, Novak O, He W, et al. 2011. The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. The Plant Cell 23:3961−73 doi: 10.1105/tpc.111.088047 |
[14] |
Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, et al. 2011. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. PNAS 108:18518−23 doi: 10.1073/pnas.1108436108 |
[15] |
Homayouni AL, Strader LC. 2020. Sugar rush: Glucosylation of IPyA attenuates auxin levels. PNAS 117:7558−60 doi: 10.1073/pnas.2003305117 |
[16] |
Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany 63:2853−72 doi: 10.1093/jxb/ers091 |
[17] |
Abdollahi Sisi N, Růžička K. 2020. ER-Localized PIN Carriers: Regulators of Intracellular Auxin Homeostasis. Plants 9:1527 doi: 10.3390/plants9111527 |
[18] |
Swarup R, Bhosale R. 2019. Developmental roles of AUX1/LAX auxin influx carriers in plants. Frontiers in Plant Science 10:1306 doi: 10.3389/fpls.2019.01306 |
[19] |
Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, et al. 2022. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 609:605−10 doi: 10.1038/s41586-022-04883-y |
[20] |
Leyser O. 2018. Auxin signaling. Plant Physiology 176:465−79 doi: 10.1104/pp.17.00765 |
[21] |
Chandra S, Satapathy L, Basu S, Jha SK, Kumar M, et al. 2020. Characterization of the leaf rust responsive ARF genes in wheat (Triticum aestivum L.). Plant Cell Reports 39:1639−54 doi: 10.1007/s00299-020-02591-3 |
[22] |
Sharif R, Su L, Chen X, Qi X. 2022. Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Horticulture Research 9:uhab024 doi: 10.1093/hr/uhab024 |
[23] |
Casanova-Sáez R, Voß U. 2019. Auxin metabolism controls developmental decisions in land plants. Trends in plant science 24:741−54 doi: 10.1016/j.tplants.2019.05.006 |
[24] |
Su SH, Masson PH. 2019. A new wrinkle in our understanding of the role played by auxin in root gravitropism. New Phytologist 224:543−46 doi: 10.1111/nph.16140 |
[25] |
Steffens B, Rasmussen A. 2016. The physiology of adventitious roots. Plant Physiology 170:603−17 doi: 10.1104/pp.15.01360 |
[26] |
Cai B, Wang T, Sun H, Liu C, Chu J, et al. 2022. Gibberellins regulate lateral root development that is associated with auxin and cell wall metabolisms in cucumber. Plant Science 317:110995 doi: 10.1016/j.plantsci.2021.110995 |
[27] |
Qi F, Xiang Z, Kou N, Cui W, Xu D, et al. 2017. Nitric oxide is involved in methane-induced adventitious root formation in cucumber. Physiologia Plantarum 159:366−77 doi: 10.1111/ppl.12531 |
[28] |
Jiang X, He J, Cheng P, Xiang Z, Zhou H, et al. 2018. Methane control of adventitious rooting requires γ-Glutamyl cysteine synthetase-mediated glutathione homeostasis. Plant and Cell Physiology 60:802−15 doi: 10.1093/pcp/pcy241 |
[29] |
Morohashi K, Okamoto M, Yamazaki C, Fujii N, Miyazawa Y, et al. 2017. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. New Phytologist 215:1476−89 doi: 10.1111/nph.14689 |
[30] |
Fujii N, Miyabayashi S, Sugita T, Kobayashi A, Yamazaki C, et al. 2018. Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots. PLoS One 13:e0189827 doi: 10.1371/journal.pone.0189827 |
[31] |
Zheng Z, Guo Y, Novák O, Chen W, Ljung K, et al. 2016. Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants 2:16025 doi: 10.1038/nplants.2016.25 |
[32] |
Hu L, Liu P, Jin Z, Sun J, Weng Y, et al. 2021. A mutation in CsHY2 encoding a phytochromobilin (PΦB) synthase leads to an elongated hypocotyl 1(elh1) phenotype in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 134:2639−52 doi: 10.1007/s00122-021-03849-4 |
[33] |
Liu X, Chen J, Zhang X. 2021. Genetic regulation of shoot architecture in cucumber. Horticulture Research 8:143 doi: 10.1038/s41438-021-00577-0 |
[34] |
Shen J, Zhang Y, Ge D, Wang Z, Song W, et al. 2019. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. PNAS 116:17105−14 doi: 10.1073/pnas.1907968116 |
[35] |
Shen J, Ge D, Song X, Xiao J, Liu X, et al. 2021. Roles of CsBRC1-like in leaf and lateral branch development in cucumber. Plant Science 302:110681 doi: 10.1016/j.plantsci.2020.110681 |
[36] |
Sohail H, Noor I, Nawaz MA, Ma M, Shireen F, et al. 2022. Genome-wide identification of plasma-membrane intrinsic proteins in pumpkin and functional characterization of CmoPIP1-4 under salinity stress. Environmental and Experimental Botany 202:104995 doi: 10.1016/j.envexpbot.2022.104995 |
[37] |
Song M, Cheng F, Wang J, Wei Q, Fu W, et al. 2019. A leaf shape mutant provides insight into PINOID Serine/Threonine Kinase function in cucumber (Cucumis sativus L.). Journal of Integrative Plant Biology 61:1000−14 doi: 10.1111/jipb.12739 |
[38] |
Zhang K, Li Y, Zhu W, Wei Y, Njogu MK, et al. 2020. Fine mapping and transcriptome analysis of virescent leaf gene v-2 in cucumber (Cucumis sativus L.). Frontiers in Plant Science 11:570817 doi: 10.3389/fpls.2020.570817 |
[39] |
Chen Y, Wen H, Pan J, Du H, Zhang K, et al. 2021. CsUFO is involved in the formation of flowers and tendrils in cucumber. Theoretical and Applied Genetics 134:2141−50 doi: 10.1007/s00122-021-03811-4 |
[40] |
Chen F, Fu B, Pan Y, Zhang C, Wen H, et al. 2017. Fine mapping identifies CsGCN5 encoding a histone acetyltransferase as putative candidate gene for tendril-less1 mutation (td-1) in cucumber. Theoretical and Applied Genetics 130:1549−58 doi: 10.1007/s00122-017-2909-1 |
[41] |
Wang S, Yang X, Xu M, Lin X, Lin T, et al. 2015. A Rare SNP identified a TCP transcription factor essential for tendril development in cucumber. Molecular Plant 8:1795−808 doi: 10.1016/j.molp.2015.10.005 |
[42] |
Liu X, Hao N, Li H, Ge D, Du Y, et al. 2019. PINOID is required for lateral organ morphogenesis and ovule development in cucumber. Journal of Experimental Botany 70:5715−30 doi: 10.1093/jxb/erz354 |
[43] |
Nie J, Shan N, Liu H, Yao X, Wang Z, et al. 2021. Transcriptional control of local auxin distribution by the CsDFB1-CsPHB module regulates floral organogenesis in cucumber. PNAS 118:e2023942118 doi: 10.1073/pnas.2023942118 |
[44] |
Wang D-H, Li F, Duan Q-H, Han T, Xu Z-H, Bai S-N. 2010. Ethylene perception is involved in female cucumber flower development. The Plant Journal 61:862−72 doi: 10.1111/j.1365-313X.2009.04114.x |
[45] |
Song J, Zhang Y, Song S, Su W, Chen R, et al. 2018. Comparative RNA-Seq analysis on the regulation of cucumber sex differentiation under different ratios of blue and red light. Botanical Studies 59:21 doi: 10.1186/s40529-018-0237-7 |
[46] |
Niu H, Wang H, Zhao B, He J, Yang L, et al. 2022. Exogenous auxin-induced ENHANCER OF SHOOT REGENERATION 2 (ESR2) enhances femaleness of cucumber via activating CsACS2 gene. Horticulture Research 9:uhab085 doi: 10.1093/hr/uhab085 |
[47] |
Han Y, Zhao F, Gao S, Wang X, Wei A, et al. 2018. Fine mapping of a male sterility gene ms-3 in a novel cucumber (Cucumis sativus L.) mutant. Theoretical and Applied Genetics 131:449−60 doi: 10.1007/s00122-017-3013-2 |
[48] |
Sun L, Sui X, Lucas WJ, Li Y, Feng S, et al. 2019. Down-regulation of the sucrose transporter CsSUT1 causes male sterility by altering carbohydrate supply. Plant Physiology 180:986−97 doi: 10.1104/pp.19.00317 |
[49] |
Su L, Wang M, Wang Y, Sharif R, Ren N, et al. 2021. Forchlorfenuron application induced parthenocarpic fruit formation without affecting fruit quality of cucumber. Horticulturae 7:128 doi: 10.3390/horticulturae7060128 |
[50] |
Wang M, Su L, Cong Y, Chen J, Geng Y, et al. 2021. Sugars enhance parthenocarpic fruit formation in cucumber by promoting auxin and cytokinin signaling. Scientia Horticulturae 283:110061 doi: 10.1016/j.scienta.2021.110061 |
[51] |
Zhao J, Jiang L, Che G, Pan Y, Li Y, et al. 2019. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. The Plant Cell 31:1289−307 doi: 10.1105/tpc.18.00905 |
[52] |
Wang L, Cao C, Zheng S, Zhang H, Liu P, et al. 2017. Transcriptomic analysis of short-fruit 1 (sf1) reveals new insights into the variation of fruit-related traits in Cucumis sativus. Scientific Reports 7:2950 doi: 10.1038/s41598-017-02932-5 |
[53] |
Wang H, Sun J, Yang F, Weng Y, Chen P, et al. 2021. CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 134:2429−41 doi: 10.1007/s00122-021-03833-y |
[54] |
Li S, Wang C, Zhou X, Liu D, Liu C, et al. 2020. The curvature of cucumber fruits is associated with spatial variation in auxin accumulation and expression of a YUCCA biosynthesis gene. Horticulture Research 7:135 doi: 10.1038/s41438-020-00354-5 |
[55] |
Colle M, Weng Y, Kang Y, Ophir R, Sherman A, et al. 2017. Variation in cucumber (Cucumis sativus L.) fruit size and shape results from multiple components acting pre-anthesis and post-pollination. Planta 246:641−58 doi: 10.1007/s00425-017-2721-9 |
[56] |
Pan Y, Wang Y, McGregor C, Liu S, Luan F, et al. 2020. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theoretical and Applied Genetics 133:1−21 doi: 10.1007/s00122-019-03481-3 |
[57] |
Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. 2021. Molecular research progress and improvement approach of fruit quality traits in cucumber. Theoretical and Applied Genetics 134:3535−52 doi: 10.1007/s00122-021-03895-y |
[58] |
Xie Q, Liu P, Shi L, Miao H, Bo K, et al. 2018. Combined fine mapping, genetic diversity, and transcriptome profiling reveals that the auxin transporter gene ns plays an important role in cucumber fruit spine development. Theoretical and Applied Genetics 131:1239−52 doi: 10.1007/s00122-018-3074-x |
[59] |
Liu X, Yang X, Xie Q, Miao H, Bo K, et al. 2022. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit. The Plant Journal 110:325−36 doi: 10.1111/tpj.15710 |
[60] |
Yang S, Wang Y, Zhu H, Zhang M, Wang D, et al. 2022. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. The New Phytologist 233:2643−58 doi: 10.1111/nph.17967 |
[61] |
Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771 doi: 10.3390/genes10100771 |
[62] |
Zhang H, Zhu J, Gong Z, Zhu J-K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19 doi: 10.1038/s41576-021-00413-0 |
[63] |
Sharif R, Xie C, Wang J, Cao Z, Zhang H, et al. 2020. Genome wide identification, characterization and expression analysis of HD-ZIP gene family in Cucumis sativus L. under biotic and various abiotic stresses. International Journal of Biological Macromolecules 158:502−20 doi: 10.1016/j.ijbiomac.2020.04.124 |
[64] |
Sharif R, Raza A, Chen P, Li Y, El-Ballat EM, et al. 2021. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants. Genes 12:1256 doi: 10.3390/genes12081256 |
[65] |
Sharif R, Liu P, Wang D, Jin Z, Uzair U, et al. 2021. Genome-wide characterisation and expression analysis of cellulose synthase genes superfamily under various environmental stresses in Cucumis sativus L. New Zealand Journal of Crop and Horticultural Science 49:127−50 doi: 10.1080/01140671.2021.1926291 |
[66] |
Li N, Euring D, Cha JY, Lin Z, Lu M, et al. 2021. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Frontiers in Plant Science 11:627969 doi: 10.3389/fpls.2020.627969 |
[67] |
Küpers JJ, Oskam L, Pierik R. 2020. Photoreceptors Regulate Plant Developmental Plasticity through Auxin. Plants 9:940 doi: 10.3390/plants9080940 |
[68] |
Yan S, Che G, Ding L, Chen Z, Liu X, et al. 2016. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development. Scientific Reports 6:20760 doi: 10.1038/srep20760 |
[69] |
Ahammed GJ, Wu M, Wang Y, Yan Y, Mao Q, et al. 2020. Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Scientia Horticulturae 265:109205 doi: 10.1016/j.scienta.2020.109205 |
[70] |
Guo Z, Du N, Li Y, Zheng S, Shen S, et al. 2020. Gamma-aminobutyric acid enhances tolerance to iron deficiency by stimulating auxin signaling in cucumber (Cucumis sativus L.). Ecotoxicology and Environmental Safety 192:110285 doi: 10.1016/j.ecoenv.2020.110285 |
[71] |
Qi X, Li Q, Ma X, Qian C, Wang H, et al. 2019. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. Plant, Cell & Environment 42:1458−70 doi: 10.1111/pce.13504 |
[72] |
Qi X, Li Q, Shen J, Qian C, Xu X, et al. 2020. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant, Cell & Environment 43:1545−57 doi: 10.1111/pce.13738 |
[73] |
Amin B, Atif MJ, Meng H, Ghani MI, Ali M, et al. 2022. Biochemical and physiological responses of cucumis sativus cultivars to different combinations of low-temperature and high humidity. Journal of Plant Growth Regulation doi: 10.1007/s00344-021-10556-3 |
[74] |
Dong S, Wang W, Bo K, Miao H, Song Z, et al. 2019. Quantitative trait loci mapping and candidate gene analysis of low temperature tolerance in cucumber seedlings. Frontiers in Plant Science 10:1620 doi: 10.3389/fpls.2019.01620 |
[75] |
Zhang X, Liu F, Zhai J, Li F, Bi HG, et al. 2020. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber. Planta 251:69 doi: 10.1007/s00425-020-03362-w |
[76] |
Zhang X, Fu X, Liu F, Wang Y, Bi H, et al. 2021. Hydrogen sulfide improves the cold stress resistance through the CsARF5-CsDREB3 module in cucumber. International Journal of Molecular Sciences 22:13229 doi: 10.3390/ijms222413229 |
[77] |
Mwando E, Angessa TT, Han Y, Zhou G, Li C. 2021. Quantitative Trait Loci Mapping for Vigour and Survival Traits of Barley Seedlings after Germinating under Salinity Stress. Agronomy 11:103 doi: 10.3390/agronomy11010103 |
[78] |
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, et al. 2022. Smart reprograming of plants against salinity stress using modern biotechnological tools. Critical Reviews in Biotechnology 00:1−28 doi: 10.1080/07388551.2022.2093695 |
[79] |
Du C, Li H, Liu C, Fan H. 2021. Understanding of the postgerminative development response to salinity and drought stresses in cucumber seeds by integrated proteomics and transcriptomics analysis. Journal of Proteomics 232:104062 doi: 10.1016/j.jprot.2020.104062 |
[80] |
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, et al. 2022. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Frontiers in Plant Science 13:819658 doi: 10.3389/fpls.2022.819658 |
[81] |
Zhu Y, Yin J, Liang Y, Liu J, Jia J, et al. 2019. Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicology and Environmental Safety 174:245−54 doi: 10.1016/j.ecoenv.2019.02.075 |
[82] |
Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, et al. 2021. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PloS one 16:e0260556 doi: 10.1371/journal.pone.0260556 |
[83] |
Li Y, Li S, He X, Jiang W, Zhang D, et al. 2020. CO2 enrichment enhanced drought resistance by regulating growth, hydraulic conductivity and phytohormone contents in the root of cucumber seedlings. Plant Physiology and Biochemistry 152:62−71 doi: 10.1016/j.plaphy.2020.04.037 |
[84] |
Raza A, Habib M, Kakavand SN, Zahid Z, Zahra N, et al. 2020. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology 9:177 doi: 10.3390/biology9070177 |
[85] |
Sun H, Dai H, Wang X, Wang G. 2016. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Ecotoxicology and Environmental Safety 133:114−26 doi: 10.1016/j.ecoenv.2016.07.003 |
[86] |
Dai Z, Dong S, Miao H, Liu X, Han J, et al. 2022. Genome-wide identification of TIFY genes and their response to various pathogen infections in cucumber (Cucumis sativus L.). Scientia Horticulturae 295:110814 doi: 10.1016/j.scienta.2021.110814 |
[87] |
Zheng L, Zhang M, Zhuo Z, Wang Y, Gao X, et al. 2021. Transcriptome profiling analysis reveals distinct resistance response of cucumber leaves infected with powdery mildew. Plant Biology 23:327−40 doi: 10.1111/plb.13213 |
[88] |
Zhang P, Zhu Y, Zhou S. 2021. Comparative analysis of powdery mildew resistant and susceptible cultivated cucumber (Cucumis sativus L.) varieties to reveal the metabolic responses to Sphaerotheca fuliginea infection. BMC Plant Biology 21:24 doi: 10.1186/s12870-020-02797-3 |
[89] |
Navarrete F, Gallei M, Kornienko AE, Saado I, Khan M, et al. 2022. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1. Plant Communications 3:100269 doi: 10.1016/j.xplc.2021.100269 |
[90] |
Yin L, Qu J, Deng S, Liu S, Lu J, Zhang Y. 2017. Phytohormone and genome variations in Vitis amurensis resistant to downy mildew. Genome 60:791−96 doi: 10.1139/gen-2017-0008 |
[91] |
Yan S, Ning K, Wang Z, Liu X, Zhong Y, et al. 2020. CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology 18:e3000671 doi: 10.1371/journal.pbio.3000671 |
[92] |
Wang X, Cheng C, Zhang K, Tian Z, Xu J, et al. 2018. Comparative transcriptomics reveals suppressed expression of genes related to auxin and the cell cycle contributes to the resistance of cucumber against Meloidogyne incognita. BMC Genomics 19:583 doi: 10.1186/s12864-018-4979-0 |
[93] |
Wang X, Cheng C, Li Q, Zhang K, Lou Q, et al. 2020. Multi-omics analysis revealed that MAPK signaling and flavonoid metabolic pathway contributed to resistance against Meloidogyne incognita in the introgression line cucumber. Journal of Proteomics 220:103675 doi: 10.1016/j.jprot.2020.103675 |